
ENGINEERING/MANAGEMENT

Competitive Engineering is a revolutionary project
management method, proven by organizations worldwide
Competitive Engineering documents Tom Gilb’s unique, ground-breaking
approach to communicating management objectives and systems engineering
requirements, clearly and unambiguously.

Competitive Engineering is a revelation for anyone involved in management
and risk control. Already used by thousands of managers and systems
engineers around the world, this is a handbook for initiating, controlling and
delivering complex projects on time and within budget. Competitive
Engineering copes explicitly with the rapidly changing environment that is a
reality for most of us today.

Elegant, comprehensive and accessible, the Competitive Engineering
methodology provides a practical set of tools and techniques that enable
readers to effectively design, manage and deliver results in any complex
organization – in engineering, industry, systems engineering, software, IT, the
service sector and beyond.

http://books.elsevier.com

Tom Gilb is an independent consultant
and author of numerous books, articles

and papers. He is recognised as one of the
leading ‘thinkers’ within the IT community

and has worked with managers and
engineers around the world in developing

and applying his renowned methods.

COMPETITIVE ENGINEERING ENCOMPASSES

•Requirements specification

•Design engineering (including design specification and evaluation)

•Evolutionary project management

•Project metrics

•Risk management

•Priority management

•Specification quality control

•Change control

BENEFITS OF COMPETITIVE ENGINEERING

• Used and proven by many organizations including HP, Intel,
CitiGroup, IBM, Nokia and the US Department of Defense

• Detailed, practical and innovative coverage of key subjects
including requirements specification, design evaluation, specification
quality control and evolutionary project management

• A complete, proven and meaningful ‘end-to-end’ process for
specifying, evaluating, managing and delivering high quality solutions

• Rich in detail and comprehensive in scope, with thought-
provoking ideas on every page

! This stuff works. Competitive
Engineering contains powerful

tools that are both practical and
simple – a rare combination.
Over the last decade, I have
applied Tom Gilb’s tools in a
variety of settings including

product development, service
delivery, manufacturing, site
construction, IT, eBusiness,

quality, marketing, and
management, on projects of
various sizes. Competitive
Engineering is based on

decades of practical experience,
feedback, and improvement,

and it shows. "
ERIK SIMMONS,

INTEL CORPORATION, REQUIREMENTS

ENGINEERING PRACTICE LEAD,
CORPORATE QUALITY NETWORK

!Systems engineers should
find Competitive Engineering
widely useful, with or without

the additional framework
provided by Planguage. Even

without adopting Planguage as
a whole there are numerous

important principles and
techniques that can benefit any

system project. "
DR. MARK W. MAIER, DISTINGUISHED

ENGINEER AT THE AEROSPACE

CORPORATION AND CHAIR OF THE INCOSE

SYSTEMS ARCHITECTURE WORKING GROUP

A
ut

ho
r p

ho
to

:B
ar

t v
an

 O
ve

rb
ee

ke
Ph

ot
og

ra
ph

y
ht

tp
://

w
w

w
.b

vo
f.n

l

Visit http://books.elsevier.com/companions
to access the complete Planguage glossary

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH000-PRELIMS.3D – 1 – [1–22/22]
29.6.2005 12:57PM

COMPETITIVE ENGINEERING
A Handbook for Systems Engineering

Requirements Engineering,
and Software Engineering

Using Planguage

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH000-PRELIMS.3D – 1 – [1–22/22]
29.6.2005 12:57PM

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH000-PRELIMS.3D – 1 – [1–22/22]
29.6.2005 12:57PM

COMPETITIVE
ENGINEERING

A Handbook for Systems Engineering
Requirements Engineering,
and Software Engineering

Using Planguage

Tom Gilb
Email: Tom@Gilb.com

URL: www.Gilb.com

Editor: Lindsey Brodie,
Middlesex University, UK

Email: lindseybrodie@btopenworld.com

AMSTERDAM . BOSTON . HEIDELBERG . LONDON . NEW YORK . OXFORD

PARIS . SAN DIEGO . SAN FRANCISCO . SINGAPORE . SYDNEY . TOKYO

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH000-PRELIMS.3D – 1 – [1–22/22]
29.6.2005 12:57PM

Elsevier Butterworth-Heinemann
Linacre House, Jordan Hill, Oxford OX2 8DP
30 Corporate Drive, Burlington, MA 01803

First published 2005

Copyright ! 2005, Tom Gilb. All rights reserved

The right of Tom Gilb to be identified as the author of this work has been
asserted in accordance with the Copyright, Design and Patents Act 1988

No part of this publication may be reproduced in any material form (including
photocopying or storing in any medium by electronic means and whether or
not transiently or incidentally to some other use of this publication) without
the written permission of the copyright holder except in accordance with the
provisions of the Copyright, Designs and Patents Act 1988 or under the terms of a
licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road,
London, England W1T 4LP. Applications for the copyright holder’s written permission
to reproduce any part of this publication should be addressed to the publisher

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication Data
A catalogue record for this book is available from the Library of Congress

ISBN 0 7506 6507 6

Typeset by Integra Software Services Pvt. Ltd, Pondicherry, India
www.integra-india.com
Printed and bound in Great Britain

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

For information on all Elsevier Butterworth-Heinemann publications visit our
website at http://www.books.elsevier.com

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH000-PRELIMS.3D – 1 – [1–22/22]
29.6.2005 12:57PM

CONTENTS

Foreword

Erik Simmons vii

Endorsements

Roger Pressman ix

Mark Maier x

Preface xii

Acknowledgements xv

Introduction xvii

Chapter 1 Planguage Basics and Process Control 1

Chapter 2 Introduction to Requirements 35

Chapter 3 Functions 81

Chapter 4 Performance 109

Chapter 5 Scales of Measure 137

Chapter 6 Resources, Budgets and Costs 165

Chapter 7 Design Ideas and Design Engineering 185

Chapter 8 Specification Quality Control 221

Chapter 9 Impact Estimation 261

Chapter 10 Evolutionary Project Management 291

Planguage Concept Glossary 321

Glossary Introduction 321

Bibliography 439

Further Reading 445

Index 449

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH000-PRELIMS.3D – 1 – [1–22/22]
29.6.2005 12:57PM

To Jane

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH000-PRELIMS.3D – 1 – [1–22/22]
29.6.2005 12:57PM

FOREWORD

Competition is the strongest force shaping today’s product develop-
ment landscape. The race to create customer and end user value is
intense. In addition, companies large and small face ever-increasing
product complexity, pressure to reduce time to market and increase
productivity, and unprecedented challenges from globalization.

Competitive Engineering contains powerful tools to apply to these
problems. At the same time, the tools are both practical and simple –
a rare combination. Over the last decade, I personally have applied
these tools in a variety of settings in software development and more
general product development, on projects of various sizes. Thousands
of students have been through training and workshops I have authored
that contain Planguage, Evo, Specification Quality Control and other
facets of Competitive Engineering. The vast majority of students
immediately recognize their value and go on to use these beneficially
on projects. Competitive Engineering is based on decades of practical
experience, feedback and improvement, and it shows. This stuff
works.

To be effective over a wide range of problems, a method or tool must
possess many qualities: flexibility, scalability, portability and learn-
ability, to name a few. The methods and tools found in Competitive
Engineering are up to the challenge. They are designed to be tailored to
local culture and practices. The central ideas are so fundamental that
they apply to a huge range of project types and sizes. And, while they
are rich enough that they require serious study to master, they can be
learned and used effectively by almost anyone; I have taught them to
people in product development, service delivery, manufacturing, site
construction, information technology, eBusiness, quality, marketing
and management.

You may encounter some resistance when first proposing or teaching
these concepts; I have, and still do from time to time. Don’t be
discouraged. These are often revolutionary concepts in relation to a
group’s existing practices. Keep in mind that it is not necessary to use
everything you find in Competitive Engineering right from the start.
Instead, use Competitive Engineering to create Competitive Engineering.
Start using Evo to improve things in small steps based on what is most

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH000-PRELIMS.3D – 1 – [1–22/22]
29.6.2005 12:57PM

valuable in your environment. Use Planguage to document stake-
holder needs, success criteria and the like. Before you know it, you
will have made significant progress. It all feels remarkably natural once
you get going.

Erik Simmons
Intel Corporation

Requirements Engineering Practice Lead
Corporate Quality Network

viii Foreword

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH000-PRELIMS.3D – 1 – [1–22/22]
29.6.2005 12:57PM

ENDORSEMENTS
When I was a young engineer, I thought all system problems were
merely a matter of applying clever technological solutions. ‘‘If we had
better technology,’’ I thought, ‘‘we’d be able to get this problem
solved quickly.’’

After more than 30 years in the IT and systems world, I now know
better. Creating, building, and delivering high quality computer-based
systems, on-time and within budget not only requires solid technol-
ogy, but also a meaningful process, effective project management,
comprehensive risk control, and broad-based communication between
all constituencies at all levels of the project. In fact, it is the last item in
this list that is probably most important (and the most difficult to
achieve). Projects fail because communication fails.

System and software engineers and their customers need a consistent
mechanism for communicating the purpose of the system, the con-
straints that must be addressed, the design and implementation stra-
tegies that are to be applied, the risks to be managed, and the measures
of quality that are relevant and meaningful. But how do we achieve a
consistent mechanism for communication and how do we use this to
better manage and implement complex systems?

In this book, Tom Gilb provides us with answers that are both elegant
and comprehensive. He describes the Planguage method – ‘‘a practical
set of ideas, to help you get better control over all forms of planning,
design, engineering, and project management.’’

To be honest, those of us who are industry veterans have heard this
before. Literally dozens of methods (and books) have made similar
claims and then failed to deliver. Why then, should we believe that
Planguage is any different? There are many reasons.

Gilb has designed an evolutionary approach that will allow you to
define system requirements clearly and unambiguously. More impor-
tantly, he provides a bridge that enables you to describe the resultant
solution, design a high quality implementation, and then analyze how
the proposed solution impacts business objectives. In addition, he
stresses quantitative evaluation, so that progress toward the competi-
tive goals of your system can be evaluated competitively. Planguage
enhances communication – at the specification level, at the design
level, at the project level, and at the process level. Projects succeed
when communication succeeds, and Planguage leads to successful
communication.

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH000-PRELIMS.3D – 1 – [1–22/22]
29.6.2005 12:57PM

As Tom himself admits, this book is not a light read. Competitive
Engineering provides thought-provoking ideas on almost every page,
is rich in detail, and comprehensive in scope. It provides guidance for
every system engineering activity and a thorough description of every
aspect of Planguage. You’ll have to spend time with Gilb’s ideas, but
once you understand and apply them, your ability to engineer com-
plex systems will be greatly enhanced.

Roger S. Pressman, Ph.D.
President, R.S. Pressman & Associates, Inc.

e-mail: pressman@rspa.com

Competitive Engineering stakes out unusual ground in engineering lit-
erature. The ground it takes is doubly unusual for a systems engineering
book. Competitive Engineering works to provide pragmatic and directly
applicable methods to fundamental design problems that cross applica-
tion domains. Where many books provide procedural methods that
apply only to particular problems, Competitive Engineering seeks to be
general and to be applicable to many forms of complex systems. Where
many books take on abstract or theoretical aspects of system develop-
ment, Competitive Engineering provides specific, directly applicable
techniques. And where many books address only narrow business mod-
els, such as contracted development,Competitive Engineering applies to a
range of evolutionary and competitive developments.

Tom Gilb clearly intends for the book to be taken as a whole.
Planguage provides a documented and uniform set of concepts and
terms that a team can use to organize development efforts from simple
to complex. As Tom explains, the book can be viewed as a compre-
hensive handbook to managing the development of complex systems.
Its background is particularly strong for information systems, but it
also applies to many other types of systems.

However, systems engineers should rightly be interested in this book
even if they have no intention of adopting Planguage in its entirety.
Competitive Engineering contains many other important nuggets, in
consequence of the unique ground it has staked out, that are impor-
tant to systems engineering even removed from full adoption of
Planguage. A few examples are the sections on Scales of Measure,
Impact Estimation, and Evolutionary Project Management.

One of the intellectual foundations of systems engineering is decision
theory. Decision theory rests on our ability to discover a proper set of
attributes on which to measure the goodness or worth of a system, to
quantify relative to those attributes, to evaluate the consequences of
design choices relative to those attributes and to make decisions based
on those attributes. Competitive Engineering adds a rich set of heur-
istics and methods to the notoriously difficult problem of discovering

x Endorsements

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH000-PRELIMS.3D – 1 – [1–22/22]
29.6.2005 12:57PM

good sets of attributes, quantifying performance on complex attributes
and communicating the consequences of design choices relative to
those attributes. The approach in Competitive Engineering is strongly
pragmatic, while also being theoretically grounded. A user who has
committed to Planguage can take the approach as a whole and find
strong guidance for fully implementing it. A user who has not adopted
Planguage as a whole can also benefit, because he or she will discover
that the Scales of Measure and Impact Estimation concepts are solidly
grounded and can be lifted and transferred into other development
ontologies and other decision theory methods. The ‘lift-and-carry’
into other methods will benefit from the strong heuristics and well-
thought-out communication methods presented in the book.

In a similar way, Competitive Engineering’s take on Evolutionary
Project Management is highly useful on its own. Virtually all soft-
ware-intensive systems today are developed in an evolutionary way,
even when we don’t plan to. While the importance and basic mechan-
isms of evolutionary development are well known, the community is
in need of wider sets of guidelines and alternatives for actual imple-
mentation. It is in this area that Competitive Engineering delivers
important new material.

Systems engineers should find Competitive Engineering widely useful,
with or without the additional framework provided by Planguage.
Even without adopting Planguage as a whole there are numerous
important principles and techniques that can benefit any system
project. And those who dip in looking for solutions to one problem
or another may come to appreciate the full framework of Planguage.

Dr Mark W. Maier
Distinguished Engineer at The Aerospace Corporation and Chair of
the INCOSE Systems Architecture Working Group. Co-author of

The Art of Systems Architecting, Second Edition (CRC Press).

Endorsements xi

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH000-PRELIMS.3D – 1 – [1–22/22]
29.6.2005 12:57PM

PREFACE

Background to writing Competitive Engineering

It has been sixteen years since Principles of Software Engineering
Management (Tom Gilb, 1988, Addison-Wesley) was published.
Since then I have continued to develop Planguage and many
changes have been introduced. So, my main intention in writing
Competitive Engineering (CE) is to document the current
basic definition of Planguage (that is, the language and its
methods).

In practice, the discipline of writing this book has also caused
considerable improvement in the consistency of ideas and the quality
of the explanation. Hopefully, readers will forgive me that the
style of this book is deliberately ‘less chatty’ than Principles of
Software Engineering Management. The aim is to provide a funda-
mental systems engineering handbook, which is more directly
concerned with providing practical guidance on how to use
Planguage.

In large part, CE is based around the Glossary of Planguage. The
Glossary gives additional rigor to the book, as it has been applied to
the entire text, including the Glossary itself.

Major influences on Planguage

The dominating influences behind the creation of Planguage
include:

. The works of Deming, Juran, Crosby, Jevons (The Principles of
Science, Dover Edition, 1960, originally published 1875), Boehm,
Weinberg, Lord Kelvin, Keeney, Koen and Peters. See also the
Bibliography and the citations in this book.

. My work with real engineers and managers in the industrial world;
who want and need these ideas. It is amazing to me to see
how each new piece of work, or consulting, directly results
in evolutionary improvements to the theory and practice of
Planguage.

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH000-PRELIMS.3D – 1 – [1–22/22]
29.6.2005 12:57PM

. My many professional friends, clients and students, who appreciate,
encourage, comment and discuss Planguage and share with me their
ideas, case studies, papers and books.

See http://zapatopi.net/Kelvin/quotes.html, which reads: ‘‘In phys-
ical science the first essential step in the direction of learning any
subject is to find principles of numerical reckoning and practicable
methods for measuring some quality connected with it. I often say
that when you can measure what you are speaking about, and
express it in numbers, you know something about it; but when you
cannot measure it, when you cannot express it in numbers, your
knowledge is of a meagre and unsatisfactory kind; it may be the
beginning of knowledge, but you have scarcely in your thoughts
advanced to the state of Science, whatever the matter may be.’’

Lord Kelvin

How to use this book

I do not expect readers to adopt everything in this book. Adoption
must evolve based on feedback from real use.

Only generalized processes and rules are given in this book, and so it is
quite likely that they will need to be tailored to your organization. In any
case, some of the rules and processes in this book are rather too long for
everyday use. This is because explanatory text has been included. If you
intend to use any of these rule sets, then some editing is required to
produce a shorter ‘working’ version for Specification Quality Control
(SQC) purposes. (You can always make reference from your shortened
version to other text for more background information.)

You are at liberty to adopt and adapt any of the CE ideas to your
needs.

Some book conventions

Terminology: I decided to use the following as the main terms1 in
Planguage:

. ‘Requirement specification’ and ‘requirement engineering’ rather
than ‘requirements specification’ and ‘requirements engineering’,
respectively.

1 The alternative terms are declared as synonyms.

Preface xiii

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH000-PRELIMS.3D – 1 – [1–22/22]
29.6.2005 12:57PM

. ‘Function’ as an adjective, rather than ‘functional’ (so Planguage
uses ‘function requirement’ and ‘function specification’).

. I retained ‘systems engineering’ as it is such a widely used term (even
though I do feel it needs to be ‘systems’ engineering’ with an
apostrophe!).

. ‘Resource’ has been used as a main collective attribute term, rather
than ‘cost’. This was a difficult decision because ‘resource’ in the USA
tends to only mean ‘staff’. Planguage usage is wider: ‘resource’
includes all committed money, staff, time and any other assets.

Formatting of dates: To avoid the text ‘ageing’, most of the dates have
been declared as user-defined terms, such as ‘Next Year.’ In practice,
users should use more precise dates, such as ‘December 15, 2004’, or
‘Initial Delivery plus 3 Months’.

In many examples within the book, the use of the ‘Version’ parameter,
and other administrative parameters, have simply been omitted to
reduce complexity of the examples.

Planguage Glossary: Approximately 180 concepts have been formally
defined, exemplified and annotated in the CE Glossary. The other 75
per cent of defined Planguage concepts are and will be in the complete
glossary on the web. They are selected from over 640 defined Plan-
guage concepts. The complete and updated Planguage concept glos-
sary will be found at www.gilb.com. At the beginning of each chapter
are listed the key glossary concepts.

The reader is well advised to consult the Glossary when trying to make
sense of the text. In fact, it might be a good idea for the reader to scan
through the entire Glossary, stopping at interesting concepts and
getting a sense of the types of concepts I have defined.

I often think that the main lasting contribution of this book lies in the
Glossary itself. It is not that I imagine the entire world standardizing
on these terms! Rather, that I hope this Glossary might be quite useful
in helping to develop improved standard systems engineering con-
cepts. I do not doubt that we can all make these concept definitions
even better. However, the reader can be assured that all the concept
definitions were arrived at after considerable struggle and due con-
sideration of many points of view and needs! Not least was the struggle
to make them internally consistent.

At the very least, I hope that the Glossary helps the reader to be sure
of what the text is saying. I also hope that a study of the Glossary
will give the student an excellent grounding in systems engineering
concepts.

Tom Gilb, Kolbotn, Norway
Email: Tom@Gilb.com

xiv Preface

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH000-PRELIMS.3D – 1 – [1–22/22]
29.6.2005 12:57PM

ACKNOWLEDGEMENTS

I would especially like to thank my clients too numerous to mention,
both the companies and the enthusiastic individuals, and classroom
students. They created the need, and validated the practice, for so
many of the Planguage ideas.

Specific credit must also go to the following:

My personal editor, Lindsey Brodie: she helped edit Principles of
Software Engineering Management (Tom Gilb, 1988, Addison-Wesley)
and has worked with me as a consultant. She has edited all my papers
for many years. She has done a heroic and wonderfully conscientious
task of editing this book, undoubtedly changing unintelligible, well-
intended prose into consistent, intelligible text and diagrams. The
majority of the diagrams are hers alone in concept and execution. If
the book is readable, it is Lindsey who deserves the credit. If it is not,
then I must have insisted on something she disagreed with!

The following have been our core team of advisors for this book. We
could always trust them to have interesting, useful opinions and to do
some useful research for us. They saved us from many a fatal error!
They all practice, and teach, what we preach here too!

Don Mills (New Zealand), especially for his discussion on implicit
direction of numeric values for levels on scales of measure.

Erik Simmons (Portland, Oregon), Intel Corporation for permission to
use two extracts from his teaching material on ‘Landing Zone’, and who
always has a sensible, practical answer to everything.

Stuart Woodward (Ipswich, England) who decided to teach himself
Planguage, method by method, and provided the most interesting
feedback and insights on what happened when he successfully applied
the methods.

My son, Kai Thomas Gilb has been a consistent influence in keeping
the Planguage ideas simple and straightforward. He has an absolutely
independent mind: we constantly teach and consult together, and
constantly argue the technical points. He does not give up until I
see the light. He has written his own book manuscript (in a more
popular style than CE) and developed two automated tools for Plan-
guage.

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH000-PRELIMS.3D – 1 – [1–22/22]
29.6.2005 12:57PM

Thanks too must go to numerous others for pointing out various
issues and problems in Planguage and in the text. Too many to recall
all of them.

Of course, any remaining errors in this book are entirely the author’s
responsibility!

Planguage continues to evolve, and it never fails to amaze me how new
Planguage ideas continue to emerge. However, Planguage has reached
a stage where publication is timely. I hope that readers will enjoy the
book, and find something within it that they can apply – tomorrow, if
not today!

Further acknowledgements

. Clarkson N. Potter for the Alice and The Cheshire Cat and the
Humpty Dumpty figures.

. Gerrit Muller, Embedded Systems Institute, Eindhoven for permis-
sion to use his Stakeholder diagram.

xvi Acknowledgements

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH000-PRELIMS.3D – 1 – [1–22/22]
29.6.2005 12:57PM

INTRODUCTION

Competitive Engineering (CE) is about technological management, risk
control, and breakthrough improvement in complex business systems,
projects and processes. It is systems engineering, with application to all
forms of planning, requirement specification, design and project
management. It also applies to management of organizations, both top
management and technical management. ‘Competitive Engineering’
is hopefully the end result of using this book’s ideas.

What is in Competitive Engineering?

CE is taught using ‘Planguage.’1 Planguage consists of a new industrial
systems engineering language for communicating systems engineering
and management specifications, and a set of methods providing advice
on best practices. ‘Planguage’ is central to CE and permeates all
themes of this book.

The Planguage Specification Language is used to describe all the
requirements, designs and plans for a system.

The main Planguage Methods are as follows:

. Requirement Specification: used to capture all the different
requirement types. Emphasis is placed on specifying competitive
performance and resource attributes quantitatively.

. Impact Estimation: used to evaluate designs against the require-
ments. It is also used during project implementation to track pro-
gress towards meeting the requirements.

. Specification Quality Control: used at any stage of a project to
check the adherence of any plan, contract, bid or technical specifi-
cation to best practice specification standards.

. Evolutionary Project Management: used to plan and monitor
implementation of the selected designs.

The reader will, hopefully, find that these are all very practical and
innovative methods, compared with current practice and literature.

1 The word ‘Planguage’ is derived from a combination of ‘plan’ and ‘language.’ It is
pronounced like ‘language’ with the initial ‘p’ pronounced as in ‘plan.’

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH000-PRELIMS.3D – 1 – [1–22/22]
29.6.2005 12:57PM

How was Competitive Engineering developed?

The Planguage language and methods have gradually emerged from
my practical experience, since 1960, as a teacher and consultant to
industry. Since the early 1980s, earlier versions of the central Plan-
guage elements have been adopted both by pilot projects and/or
corporate-wide in several of my client multinationals including HP,
IBM, Intel, Philips, Nokia, Ericsson and Douglas Aircraft (now
Boeing). The interest and practical acceptance has encouraged me to
expand and refine the definition of the language well beyond my
earlier books and papers.

In the past, my public courses, books and articles have explained
Planguage, under a variety of names and in terms of its various
subsets, exclusively for software engineering purposes. However, since
the early 1980s, Planguage has been used in top management and
various systems engineering disciplines. This book has been written to
reflect that fact. The aim is that this book is useful for any ‘systems
engineering’ or ‘systems engineering management’ purpose.

What is special about Planguage?

Planguage integrates all the basic systems engineering disciplines from
requirement specification to product delivery. It has at its core the aim
of delivering the stakeholder-critical values. It makes the technical
strategies clearly subordinate to the required results. It gives us a
detailed set of ways to express our ideas for a system, including very
many useful glossary-defined concepts, such as: objective, strategy,
design and risk.

Planguage provides a common language for all the different disciplines
to communicate with each other. It enables interdisciplinary groups to
work as real teams towards well-documented common purposes.

Planguage is designed for adaptation and tailoring to your own
specific projects, organizations and cultures.

Planguage lays the groundwork for systematic learning organizations
and continuous work process improvement. It is based on the funda-
mental principles of feedback, of ‘Plan-Do-Study-Act’ cycles of activ-
ity as taught by W. Edwards Deming (Deming 1993) and Joseph
Juran (Juran 1974). These are probably the most powerful weapons
we have for improving productivity and economics. It is also oriented
towards the ideas of Philip B. Crosby on defect prevention and ‘clear
measurable requirements’ (Crosby 1996).

xviii Introduction

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH000-PRELIMS.3D – 1 – [1–22/22]
29.6.2005 12:57PM

Planguage gives us tools to tackle large and complex systems in a more
systematic way than current common practice. Used properly, it
should reduce the high risk of waste, delay and failure, which has
plagued all large-scale modern projects and ‘high-tech’ disciplines for
decades. We have plenty of good, intelligent and well-intentioned
people; now they, hopefully, have a useful tool for better understand-
ing and management of the fast-moving, complex and ‘not-yet-experi-
enced’ world, which seems to be our current daily working
environment.

CE’s practical ideas are already proven in practice internationally in
electronics engineering, telecommunications engineering, aircraft
engineering, top management, marketing, information technology
and industrial software engineering projects. Once they are imbedded
in corporate practice, they stay there. Once the individual knows and
uses these ideas, they are irreversibly sold on the practicality and
usefulness of these methods.

Planguage should be viewed as a powerful way to develop and
implement strategies that will help your projects to deliver the
required competitive results.

How to use Competitive Engineering

This is not a book to be read quickly and forgotten. Some CE chapters
could expand to book length to fully explain their concepts. Indeed,
this is the first in a series of related books, some of which are already
written in draft form.2

This book is more like a dictionary or a handbook. It is intended to
be a unifying standard. It should serve, for years, as the basis of
your professional development (as it has for me and for my clients).
Study it as needed. Try out the ideas in practice. Study more
detailed literature. Translate it into your organization’s local dialect.
Use it to make rapid progress towards putting in place additional
teaching and improved standards for your engineering and manage-
ment methods.

2 See www.Gilb.com for initial draft samples.

Introduction xix

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH000-PRELIMS.3D – 1 – [1–22/22]
29.6.2005 12:57PM

Structure of Competitive Engineering

The key contents of Competitive Engineering are as follows:

. Chapter 1: Planguage Basics and Process Control: This chapter
explains why Planguage is necessary and introduces the structure of
the Planguage language and methods.

. Chapter 2: Introduction to Requirement: This chapter outlines the
fundamentals of requirement specification: the framework for set-
ting targets and constraints.

. Chapter 3: Functions: This chapter describes functions and func-
tion requirements.

. Chapter 4: Performance: This chapter describes the basics of how
to specify performance attributes quantitatively.

. Chapter 5: Scales of Measure: This chapter discusses finding and
defining appropriate scales of measure.

. Chapter 6: Resources, Budgets and Costs: This chapter outlines
how to specify the resource requirements.

. Chapter 7: Design Ideas and Design Engineering: This chapter
describes how to find and specify design ideas. It also outlines the
Design Engineering process.

. Chapter 8: Specification Quality Control: This chapter gives an
overview of the Specification Quality Control method (also known
as ‘Inspection’), which measures specification quality against your
own tailored specification standards.

. Chapter 9: Impact Estimation: This chapter describes the Impact
Estimation method, which is used to evaluate quantitatively the
impact of design ideas on your performance and resource require-
ments, and can also be used to track quantitatively project progress
towards critical objectives.

. Chapter 10: Evolutionary Project Management: This chapter gives
an overview of Evolutionary Project Management. It gives you the
basic concepts of evolutionary delivery and discusses how you
identify evolutionary steps.

. Glossary: The glossary in the book has over 180 concepts. It provides
detailed reference definitions, supporting the text in the chapters (only
the main concepts could be fitted into this book, the additional con-
cepts can be found in the complete glossary at http://www.Gilb.com/).

Format of Competitive Engineering

The format of each chapter is the same:

. Section 1: Introduction: Each chapter has an introduction that puts
the chapter in context.

xx Introduction

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH000-PRELIMS.3D – 1 – [1–22/22]
29.6.2005 12:57PM

. Section 2: Practical Example: Each chapter has a simple example
that aims to introduce the subject area of the chapter.

. Section 3: Language Core: Each chapter has the basic new Plan-
guage concepts described.

. Section 4: Rules: Each chapter (apart from Chapter 8, Specification
Quality Control) includes some rules, which can be used as a
specification standard for the chapter’s subject.

. Section 5: Process Description: Each chapter has a process defini-
tion that corresponds to the subject of the chapter.

. Section 6: Principle: Each chapter has 10 principles, which are
intended (in a light-hearted manner) to highlight and remind you
of the key ideas discussed within the chapter.

. Section 7: Additional Ideas: Each chapter discusses some advanced
ideas to try to give you some insights beyond the basic ideas
described in the chapter.

. Section 8: Further Example/Case Study: Each chapter contains a
more detailed example. Real case studies or practical examples from
the author’s first-hand experience are used.

. Section 9: Diagrams/Icons: Each chapter has diagrams providing
graphical ideas for presenting the chapter content. Specifically, the
icon language supporting Planguage is shown.

. Section 10: Summary: Each chapter is summarized in the last
section.

A friendly warning

This book is intentionally written in a very condensed style. Don’t get
discouraged if you have to slow down to understand it, or if you have
to reread parts. It is ‘useful ideas per hour’ which count, not ‘pages
turned per hour’.

Introduction xxi

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH000-PRELIMS.3D – 1 – [1–22/22]
29.6.2005 12:57PM

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

Chapter

1

PLANGUAGE BASICS AND
PROCESS CONTROL
The Purpose of Planguage

GLOSSARY CONCEPTS

Planguage
Standards
Rule
Process
Procedure
Task

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

1.1 Introduction: Why We Need a Different
‘Systems Engineering’ Approach

As the rate of technological change has ‘heated up,’ I am sure we have
all seen that, increasingly, nobody ‘knows all the answers.’ Previously
we could rely on comparatively stable environments (technology,
workforce, experienced people, politics and economics). People knew
how to solve problems because they had solved similar ones before. In
addition, the concept of learning by apprenticeship was valid; ‘mas-
ters’ could pass on their wisdom over a time span of years.

Things are currently moving so fast that it is dangerous to assume
there is any first-hand knowledge of the technology we are going to
use, or of the markets we are going to sell to. Even the organizational
and social structures that we are targeting are constantly changing.
Authors such as Tom Peters have long since clearly documented these
trends and threats (Peters 1992).

So we have to find out ‘what works now’ by means of practice, not theory.
We need to develop things in a different way. We have to learn and to
change, faster than the competition.

The fundamental concepts needed now in systems engineering
include:

Learning through Rapid Feedback

Feedback is the single most powerful concept for successful projects.
Methods that use feedback are successful. Those that do not, seem to
fail. Feedback helps you get better control of your project, by provid-
ing facts about how things are working in practice. Of course, the
presumption is that the feedback is early enough to do some good.
This is the main need: rapid feedback.

Dynamic Adaptability

Projects have to be able to respond to feedback and also to be able
to keep pace weekly or monthly with changing business or organi-
zational requirements. Projects must continuously monitor the rele-
vance of their current work. Then they must modify their
requirements and strategies accordingly. Any product or organiza-
tional system should be continuously evolving or it dies. Coping
with external change during projects and adapting to it during
projects is now the norm, not the exception. Stability would be
nice, but we can’t have it!

Planguage Basics and Process Control 3

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

Capturing the Requirements

It is true of any system that there are several Critical Success Factors.
They include both performance requirements (such as serviceability,
reliability, portability and usability) and limited resource requirements
(such as people, time and money). Projects often fail to specify these
critical requirements adequately:

. not all the critical success factors are identified

. no target numeric values for survival and success are stated

. variations in targeted requirements for differing times and differing
places, are not addressed:

o the effect of peak loads, or system growth, on the required levels,
is not taken into account

o the concept of very different attribute levels, being required by
different parts of the system, or by different stakeholders, is not
considered

. no practical ways to measure the results delivered to stakeholders are
specified alongside the requirement specification.

The result is that our ability to manage successful value delivery is
destroyed from the outset. It is impossible to engineer designs to meet
non-specified or ambiguous requirements. It also is impossible to
track changes for such ill-specified requirements.

Focus on Results

The primary systems engineering task is to design and deliver the best
technical and organizational solutions, in order to satisfy the stake-
holders’ requirements, at a competitive cost. Projects must ensure that
their focus is on delivering critical and profitable results. Albert
Einstein is quoted as saying: ‘‘Perfection of means and confusion of
ends seem to characterize our age.’’1 Unfortunately, this still appears
true today. It is the delivery of the required results from a system that

1999 Jan

Feb Mar
Apr

May

‘Then’ ‘Now’

Figure 1.1
Our requirements are changing faster due to external changes.

1 Calaprice, Alice [Editor]. 2000. The Expanded Quotable Einstein. Princeton Univer-
sity Press. ISBN 0-691-07021-0.

4 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

counts. The process used and the technology selected are mere tools in
the service of the results.

Interdisciplinary Communication

Clear communication amongst the different stakeholder groups is
essential. Common problems include:

. ambiguity, due to specification that lacks precise detail

. critical specifications being ‘lost’ in overwhelming detail

. technical specification being unintelligible to the management, who
reviews it

. inadequate tracking of specification credibility: its source, status and
authorization level.

Leadership and Motivation

Clear vision makes a huge difference. Clear vision gives a common
focus for logical decision-making. When people understand the over-
all direction, they tend to make good local decisions. Only the critical
few decisions need to be made at the top. It is important for all team
members to be able immediately to channel their energies in a true
common team direction.

Receptiveness to Organizational Change

It is also important for system engineers to know that their organiza-
tional culture really supports improvement in systems engineering
methods. In other words, that people are actively encouraged to look
for improvements and to try out new solutions. Positive motivation
can be everything! It is not a case of demanding improvement, more a
case of supporting and rewarding people who seek it.

Continuous Process Improvement

The quality guru, W. Edwards Deming considered that: ‘‘Eternal
process improvement, the Plan-Do-Study-Act (PDSA) cycle, is
necessary as long as you are in competition.’’ Having best-practice
systems engineering standards in place, measuring conformance to
them and continually trying to improve them is necessary if you are
to compete well.

The only thing that should not change is a great change process.

Planguage Basics and Process Control 5

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

Practical Strategies for Systems Engineering

Planguage2 (the specification language and methods described in this
book) aims to support all the above concepts with practical ideas and
methods; it has numerous practical strategies for projects to adopt.

In-built in all these Planguage strategies is risk management. Handling
of risk is fundamental to Planguage. I do not believe that risk manage-
ment should be a separate discipline. We can deal with risks better when
we do so in every detailed specification and plan, and in every systems

Practical Strategies for Risk Management

1. Quantify requirements: All critical performance and resource
requirements must be identified and quantified numerically.

2. Maximize profit, not minimize risk: Focus on achieving the max-
imum benefits within budget and timescales rather than on attempting
to eliminate all risk.

3. Design out unacceptable risk: Unacceptable risk needs to be
‘designed out’ of the system consciously at all stages, at all levels in
all areas, for example, architecture, purchasing, contracting, devel-
opment, maintenance and human factors. This means selecting
lower-risk options.

4. Design in redundancy: When planning and implementing projects,
conscious backup redundancy for outmaneuvering risks is a neces-
sary cost.

5. Monitor reality: Early, frequent and measurable feedback from rea-
lity must be planned into your development and maintenance pro-
cesses, to identify and assess risks before they become dangerous.

6. Reduce risk exposure: The total level of risk exposure at any one time
should be consciously reduced to between 2% and 5% of total budget.

7. Communicate about risk: There must be no unexpected risks. If
people have followed guidelines, and are open about what work they
have done, then others will have the opportunity to fight risks construc-
tively. Where there are risks, then share that information.

8. Reuse what you learn about risk: Standards, and other forms of
work process guidance, must capture and assist good practice. They
must be subject to continuous process improvement.

9. Delegate personal responsibility for risk: People must be given
personal responsibility in their sector for identification and mitigation
of risks.

10. Contract out risk: Make vendors contractually responsible for risks.
They will give you better advice and services as a result.

Figure 1.2
Practical strategies for risk management.

2 Pronounced like ‘language’ with a ‘p’ as in ‘plan.’

6 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

implementation process. Figure 1.2 gives a list of strategies for risk
management. All these strategies can be found in some aspect of
Planguage.

1.2 Practical Example: Twelve Tough Questions

Here are some probing questions for controlling risk. They are power-
ful tools, which will help you in your everyday work. I call them the
‘Twelve Tough Questions’ – see the next page.

These ‘Twelve Tough Questions’ will help you find out ‘what people
really know.’ They will help you find out how strong a foundation
their opinions and recommendations are based on. From the answers
to these questions – or maybe the lack of answers – you can see risks;
and what needs to be done to reduce them. Try asking these questions
when you next review a proposal, or at your next decision-making
meeting. You will probably see the power of them immediately. Get
your management to ask these questions.

Copy this next page (permission granted as long as you include copyright).
Carry it with you to your next meeting or frame it on your wall. Use it to
arrest fuzzy thinking in your company and client documents.

Planguage Basics and Process Control 7

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

Twelve Tough Questions

1. Numbers
Why isn’t the improvement quantified?

2. Risk
What is the degree of risk or uncertainty and why?

3. Doubt
Are you sure? If not, why not?

4. Source
Where did you get that information? How can I check it out?

5. Impact
How does your idea affect my goals and budgets, measurably?

6. All critical factors
Did we forget anything critical to survival?

7. Evidence
How do you know it works that way? Did it ‘ever’?

8. Enough
Have we got a complete solution? Are all requirements satisfied?

9. Profitability first
Are we planning to do the ‘profitable things’ first?

10. Commitment
Who is responsible for failure, or success?

11. Proof
How can we be sure the plan is working, during the project,
early?

12. No cure, no pay
Is it ‘no cure, no pay’ in a contract? Why not?

! Tom Gilb 2000–5
A full paper on this is available at www.Gilb.com

8 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

1.3 Language Core: Planguage Basics and
Process Control

Planguage consists of a specification language and a corresponding
set of process descriptions (or methods). The Planguage language
terms are used together with the Planguage processes for specifica-
tion, analysis, design (also called planning, engineering, architecture
or problem-solving) and management of processes, projects or
organizations.

Planguage Specification Language

The specification language (usually called simply ‘Planguage’) is used
to specify requirements, designs and project plans. Planguage consists
of the following elements:

. A set of defined concepts. The Planguage Glossary contains the
master definition of concepts as used within Planguage (Examples
of concepts: objective, goal and function).

. A set of defined parameters and grammar. The Glossary also
contains the set of defined Planguage parameters (Examples of
parameters: Scale and Meter) used for specification.

The grammar consists of Planguage syntax rules. These syntax rules
are given in this book by example, rather than being formally stated.
The aim is to show ‘best known practice’ of how the Planguage
parameters should be specified to be useful. Note the examples
given are only ‘reasonable examples,’ the reader should feel free to
add to them, to improve them and to tailor them.

. A set of icons. Each icon is used for graphical representation of a
specific Planguage concept and/or parameter. Icons may either be
keyed in on a keyboard, or drawn. For example, <fuzzy angle
brackets> are used to indicate a ‘poor’ definition in need of improve-
ment and, the icon, ‘< >’, is in the Glossary under ‘Fuzzy’.

Relevant subsets of the Planguage language are introduced throughout
the book in the Language Core section of the chapters. More formal
definitions can also be found in the Glossary.

Planguage Process Descriptions

The Planguage process descriptions (or methods) provide recom-
mended best practice for carrying out certain tasks. The reader
should consider these defined processes as useful ‘starter kits’, but
should plan to extend, improve and tailor them to their needs,

Planguage Basics and Process Control 9

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

purposes and experiences. The set of Planguage process descriptions
is as follows:

. Requirement Specification (RS). (See Chapter 2 and sub-processes in
Chapters 3, 4, 5 and 6)

. Design Engineering (DE). Design Engineering is concerned with
identifying, selecting and sequencing delivery of design ideas (see
Chapter 7)

. Specification Quality Control (SQC). SQC is used for evaluating
the quality of any technical document and, for identifying and
preventing defects (see Chapter 8)

. Impact Estimation (IE). IE is used for evaluating designs and
monitoring the impact of results on the goals and budgets. It plays
a central role in Design Engineering (see Chapter 9)

. Evolutionary Project Management (EVO, also known as Evo). Evo
is used to deliver results in a series of high-value (highest value/best
benefit to cost ratio delivered earliest), small (say, less than 2% of
total project development time) evolutionary steps (see Chapter 10).

Note :

1. SQC measures the degree to which a specification follows its specifica-
tion rules. It directly measures the ‘loyalty to engineering standards.’

2. Impact Estimation and Evolutionary Project Management measure
the power of the design ideas in the marketplace.

The process descriptions for the above methods can be found in the
Process Description section of the relevant chapters.

Standards

As Tom Peters pointed out in Liberation Management (Peters 1992),
the only remaining reason for having a very large organization is to
share ‘know-how’ about best practices. Standards are an important
form of sharing such know-how. (Other examples would be patents,
market knowledge and specific customer knowledge.)

Standards can be termed ‘Work Process Standards.’ They can be
usefully classified into specific types of guidance as follows:

. Policies

. Rules

. Process descriptions

. Forms and document formats

. Defined concepts (such as found in the Planguage Glossary)

. Language conventions (such as Planguage grammar)

. Work rates (such as ‘checking rate’)

. Others.

10 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

For specific examples, see Sections 1.4, ‘Rules’ and 1.5, ‘Process
Description.’

Standards can be generic, or can be tailored to specific tasks (for
example, to contracting, testing, writing and installation) and tailored
to specific stakeholder environments (for example, sub-supplier,
novice, top management and customer).

Planguage Specification Language

Specification
Quality Control

Process.SQC

Impact
Estimation

Process.IE

Process.DE

Design Engineering

Production
Cycle

Development
Cycle

Strategic Management
Cycle

Evolutionary Project Management
Process.EVO

Process.SM

Planguage
Concepts

Planguage
Icons

Planguage
Parameters and

Grammar

Planguage Processes

Requirement
Specification

Process.RS and
sub-processes

Delivery
Cycle

Process.DC

Result Cycle

Implementation Cycle

Figure 1.3
Diagram of the components of Planguage. Even more detailed, and more correct (as a
consequence of being able to use the feedback from practical experience and, from any
information being up to date) specification of the requirements and design ideas is likely to
occur within the frequent development cycles. Detailed explanation of the Evo result
cycles can be found in Chapter 10 (and in the glossary).

Planguage Basics and Process Control 11

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

Standards must be brief and non-bureaucratic. I favor, as a basic
rule, limiting standards to one-page in length. I have found that my
clients stick to a one-page format, finding it very practical. When
there is only one page, detail cannot overwhelm people. For exam-
ple, only the 20 to 25 or so ‘most important’ standards ideas can fit
on a page (to be adopted, new standards must force bad ones ‘off
the page’).

Standards must change as experience dictates. The owners of the
standards must update the standards specification when better prac-
tices are discovered, so that new knowledge is shared and is rapidly put
into use. People should be taught and motivated to use the standards,
unless they can justify otherwise.

Rules

Rules are standards that provide specific guidance to follow when
carrying out a process. They are also used in Specification Quality
Control (SQC) to define and detect major defects in a specification.
Individual rules should justify their presence in standards by the
potential resource savings that can be expected from using them.

Process Descriptions

Process descriptions (or methods) are standards that describe the
best practice for carrying out work tasks. The process format used
for Planguage process descriptions consists of three basic elements:

. Entry Conditions – to determine whether it is wise to start the
procedure

. Procedure – specifying for a task what work needs to be done and
how best to do it

. Exit Conditions – to help determine if the work is ‘truly finished’.

Entry Conditions

It is not good enough to allow employees to simply plunge into a work
process and ‘just do it.’ The conditions must be right for success, not
ripe for failure. Entry conditions are a list of what an organization has
learned are the necessary prerequisites for avoiding wasted time and,
for avoiding the failure of a specific work process.

Before beginning any procedure, its entry conditions must be checked.
If the entry conditions are not met, then starting the procedure is high
risk. It is likely to be better to remove the negative conditions before

12 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

proceeding. Entry conditions should be built on experience of what is
high risk and high cost.

Procedure

A procedure is a sequenced list of instructions, describing how to carry
out the task. It documents the current recommended best practice.

EXAMPLE P3: For each design idea, estimate its numeric impact on the Scale of all the
attributes.
P4: Continue identifying/specifying or refining design ideas until the specified safety
margin is reached.

Exit Conditions

Exit Conditions are used to evaluate if the task is reliably and eco-
nomically completed. They specify the safe and economic conditions
for exit from a process to a ‘next’ process. Exit conditions are also built
on experience from previous releases to the next work process.

Input
Documents
including

Rules

Entry
Conditions

Exit
ConditionsProcedure

Entry
Process

‘E’

Exit
Process

‘X’

Task
Process

‘T’

Output
Documents

Other
Processes

Other
Processes

Figure 1.4
Diagram of a simple process showing its sub-processes and its relationship to other pro-
cesses and documents. The input documents for each process include the rules, the entry
conditions, the procedure and the exit conditions. The diagram also shows how the ‘ETX’
concept for a process is derived. A rectangle is the symbol for a ‘written document.’ A
rectangle with arrow is a ‘process’ symbol. An example of such a process could be
‘Requirement Specification.’

Planguage Basics and Process Control 13

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

Table 1.1 Description of some of the main generic Planguage parameters, concepts and icons.

Basic Planguage Parameters, Concepts and Icons

Concept or
Parameter

Meaning Used for Note also

Planguage
Term

A term that is part of
Planguage.

Structuring
specifications.

Glossary contains a set
of Planguage terms.

User-Defined
Term

A term defined by users. Identifying ‘local’
user terms.

It should be short and
descriptive.

Type: Type or category of a
term.

Declaring the Planguage
category of a user-
defined term.

Type can be implicitly
or explicitly declared.

Tag: An identifier for a
Planguage term or a
user-defined term.

Providing a unique
‘local’ reference to a
term.

Hierarchical tags can be
used. These can be used
in full (very explanatory)
or abbreviated depending
on context.

Gist: A rough, informal, brief
description or summary.

Getting consensus
initially. Summarizing
finally.

Usually not a precise,
detailed or complete
definition. For a scalar
parameter, ‘Ambition’
can be used to express
the ambition level.

Description: A description. Explaining terms. Level of explanation
detail should match the
context.

Definition: A definition, usually
expressing the
relationship to other
user-defined terms.

Defining terms. Synonyms are ‘Defined’
and ‘Defined As.’

Version: A date stamp. A time
stamp can optionally be
added.

Identifying a specific
instance of a
specification.

For example: ‘Version:
October 7, 2004 10:20.’

Stakeholder: Any person or
organizational group
with an interest in, or
ability to affect, the
system or its
environment.

Understanding who has
to be consulted or
considered when
specifying requirements.

Usually a set of several
different stakeholders is
identified.

Authority: The stakeholder or role
responsible for
determining status and
enforcing use.

Identifying where the
power resides.

The authority has the
power to determine and
change a specification.
Also to control its
availability.

Owner: The stakeholder or role
responsible for the
overall specification
itself.

Identifying the
specification owner.

The owner usually is
responsible for the
updating of a
specification.

Continued

14 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

Table 1.1 Continued

Basic Planguage Parameters, Concepts and Icons

Concept or
Parameter

Meaning Used for Note also

Readership: The stakeholder(s) or
role(s) who will or
might use the
specification.

Identifying the
specification user(s)
or audience level to
communicate to.

A synonym is ‘Intended
Readership.’ A parameter
such as ‘Specification
User’ or ‘Process User’
could be used instead.

Status: The approval level of
the specification.

Identifying which
version of the
specification is being
used.

For example: ‘Status:
Draft.’ See glossary for
additional terms to express
approval level.

Quality
Level:

The quality level of the
specification in relation
to its rules.

Stating the
estimated defect
density in a
specification.

For example: ‘Quality
Level: 3 remaining major
defects/page.’

Qualifier:
[. . .]

A qualifier adds more
specific detail to the
specification regarding
time, place and event
conditions, [when,
where, if].

States the conditions
applying to a
specification for it to
be valid: the [time,
place, event]
conditions.

The keyed icon for
Qualifier is ‘[]’ as in
‘[Qualifier Condition 1,
Qualifier Condition 2,
. . . Qualifier Condition
n].’ The ‘[. . .]’ icon is
used far more than the
parameter, Qualifier.

Source:
<-

Where exactly a given
specification or part of
it, originated.

Used to enable
readers to quickly
and accurately check
specifications at their
origin.

The icon for source is ‘<-’.
Usually the icon is used in
specifications, rather than
the term ‘Source’.

Assumption: Any assumption that
should be checked to
see if it is still applies
and/or is still correct.

Risk Analysis Other more precise
parameters should be
used if possible, for
example, Dependency,
Risk.

Note: ‘‘ . . . ’’ Any additional
comments or notes,
which are relevant.

Used to provide
additional
information likely to
help readers.

Any notes are only
commentary and are not
critical to a specification.
‘Comment:’ could be
used as an alternative.

Fuzzy
< . . .>

Identifies a term as
currently defective and
in need of improvement

Alerting the reader
and author that the
term is not
trustworthy yet or
lacks detail.

The keyed icon for fuzzy
is ‘<imprecise word>’.
The ‘<>’ icon is always
used.

Set
Parentheses
{ . . . }

Identifies a group of
terms, linked in some
way, forming a set or a
list.

Explicitly shows that
a set of terms is
being specified.

The context explains why
the terms are a set.
Usually, all terms are of
the same Type.

Planguage Basics and Process Control 15

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

1.4 Rules: Generic Rules for Technical and
Management Specification

Here are some very basic generic rules, for any type of specification.
You will find that in spite of their ‘obviousness’ and simplicity, they
are quite powerful. Most of my clients use some variation of these
‘by choice’.

Tag: Rules.GS.

Version: October 7, 2004.

Owner: TG.

Status: Draft.

Note: These rules are rather lengthy, as additional explanatory text is
present. Readers should abbreviate as appropriate.

R1:3 Tag: Specifications must each have a unique identification tag.

R2: Version: Specifications must each have a unique version identifier.
By default, use the date (and maybe also, time), as the version
identifier.

EXAMPLE Version: October 7, 2004 09:00.

R3: Unique: Specifications shall exist as one official ‘master’ version
only. Then they shall be re-used, by cross-referencing, using their
identity tag. Duplication (‘copy and paste’) should be strongly dis-
couraged.

R4: Owner: The person or group responsible for authorizing a speci-
fication should be stated (‘Authority’ would be an alternative or
supplementary parameter, though it is a different concept!).

R5: Status: The status for using a specification should be given.

EXAMPLE Status: SQC Exited.

R6: Quality Level: All specifications shall explicitly indicate their
current quality level, preferably in terms of the measure of ‘number
of remaining major defects/page’ against the relevant official standard
which applies.

3 The number is a rule tag (or identification, if you like) and the word after the colon is
an equivalent alternative tag for referencing the rule. The following references are
possible Rules.GS.R1, Rules.GS.Tag, Standards.Rules.GS.Tag and other combinations.
The dot indicates that what follows is part of a set of things named by the term
preceding the dot. For example, GS is part of a set of things called Rules.

16 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

EXAMPLE Quality Level: Less than 1 remaining major defect/page.

EXAMPLE Quality Level: Undetermined.

R7: Gist: Where appropriate, specifications should be briefly sum-
marized by a Gist statement. For performance requirements, ‘Ambi-
tion’ is a preferred alternative.

R8: Type: The type of every concept within specifications should be
clear. It should be explicitly specified after every new parameter tag
declaration unless the type will be immediately obvious to the
intended readership.

EXAMPLE ABC1: Type: Function.

R9: Clear: Specifications should be ‘clear enough to test’ and ‘unam-
biguous to their intended readers.’

R10: Simple: Complex specifications should be decomposed into a set
of elementary, tagged specifications.

R11: Fuzzy: When any element of a specification is unclear then it
shall be marked, for later clarification, by <fuzzy angle brackets>.

R12: Comment: Any text which is secondary to a specification,
and where no defect in it could result in a costly problem later,
must be clearly identified. It can be written in italic text statements,
or headed by suitable warning (such as Note, Rationale or
Comment), or written in ‘‘quotes,’’ and/or moved to footnotes.
Non-commentary specification shall be in plain text. Italic can be
used for emphasis of single terms in non-commentary statements.
Readers should be able visually, at a glance without decoding
the contents, to distinguish between ‘critical’ and ‘non-critical’
specification.

R13: Source: Specification statements shall contain information
about their source of origin. Use the ‘<-’ icon and state the source
person and the date, or the source document with detailed statement
reference.

R14: Assumptions: All known assumptions (and any relevant
source(s) of any assumptions) should be explicitly stated.

The ‘Assumption’ Planguage parameter can be used for this purpose. But
there are also a number of alternative ways, such as {Risk, Source,
Impacts, Depends On, Comment, Authority, [Qualifiers], If}. In fact,
any reasonable device, suitable for the purpose, will do.

Planguage Basics and Process Control 17

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

R15: Risks: You must specify any factors, which constitute known or
potential risks. You must identify risks explicitly.

There are a wide variety of devices for doing so, including the explicit
Planguage statement: ‘Risks.’

EXAMPLE Goal [Market Y]: 60%.
Risks: Market Y will have more competition than now.

Requirement
Specification

[Updated]

Requirement Specification

Specify Requirements

Standards:
Rules.GS
Rules.DS
Rules.IE

and relevant
Process

Descriptions

Design
Specifications

[Current]
and

Evolutionary
Plan

[Current]

Requirement
Specification

[Updated]

Design
Specifications

[Updated]
and

Evolutionary
Plan

[Updated]

Changes to
Requirements

(Feedback)

List of
Stakeholders

and,
Statement of
Requirements

or Requirement
Specification

[Current]

Standards:
Rules.GS
Rules.RS
Rules.FR
Rules.SR
Rules.SD

and relevant
Process Descriptions

Changes to
Requirements

(Feedback)

Determine Design: {Analyze Requirements,
Find & Specify Design Ideas,

Evaluate Design Ideas (Impact Estimation),
Select Design Ideas & Produce Evo Plan}

• Process.FR
• Process.PR
• Process.SD
• Process.RR

Process.RS

Process.DE

Design Engineering

• Others
• Process.IE

Notes:
Iteration of the processes has been allowed for by including existing specifications as potential inputs. Qualifying
square brackets have been used around descriptive words, which are added to assist understanding. The aim is
to show how the rules and process descriptions discussed in this book fit together. This diagram shows
procedure steps P1 and P2 of the Generic Project process (Process.GP). These same processes are used
during Manage Evolutionary Project (Process.GP.P3) – that is during Evolutionary Project Management – in
order to update the requirements, the ideas and the Evo plan (see Figure 1.6).

The abbreviations used in this figure (and in the rest of the CE book) are as follows:

GP Generic Project RR Resource Requirements
GS Generic Specification DS Design Specification
RS Requirement Specification DE Design Engineering
FR Function Requirements IE Impact Estimation
SR Scalar Requirements EVO Evolutionary Project Management
PR Performance Requirements SM Strategic Management
SD Scale Definition DC Delivery Cycle

Figure 1.5
An overview of the Planguage-defined requirement and design processes.

18 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

1.5 Process Description: Generic Project

Process: Generic Project

Tag: Process.GP.

Version: October 7, 2004.

Owner: TG.

Status: Draft.

Project
Report

Process EVO

• Process.RS
• Process.FR
• Process.PR
• Process.SD
• Process.RR
• Process.DE
• Process.IE
• Process.SM
• Process.DC
• Others

Evolutionary Project Management

Manage Evolutionary Project

Perform
Result
Cycle

Feedback
Results

Plan

Do

Study

Act

Requirement
Specification
[Updated],

Design Specifications
[Updated] and

Evolutionary Plan
[Updated]

Requirement
Specification

[Initial],
Design

Specifications
[Initial] and

Evolutionary Plan
[Initial]

Standards:
Rules.GS Rules.SD
Rules.RS Rules.DS
Rules.FR Rules.IE
Rules.SR Rules.EVO

and any relevant
Process Descriptions

Figure 1.6
An overview of the defined Planguage process, which supports Evolutionary Project
Management, Process.GP.P3 or in more detail, Process.EVO in Chapter 10.

Planguage Basics and Process Control 19

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

Gist: A process specification giving an overview of the entire Plan-
guage process for a project.

Entry Conditions

E1: The Generic Entry Conditions apply (see separate specification for
Generic Entry Conditions below).

The raw requirements should have been gathered. The known sources
of requirements should be identified and listed. These include:

. all the critical stakeholders

. all the currently identified requirements with detailed sources (use
‘<-’ and, state who or which document) and any justification for
these requirements (use the Rationale parameter).

Procedure

P1: Specify Requirements [Initial]: Specify the initial top-level
requirements (see Chapters 2, 3, 4, 5 and 6 as appropriate).

P2: Determine Design [Initial]:

P2.1: Analyze the Requirement: Consider the stakeholder value and
the delivery order for the requirements. Identify any constraints and
any conflicts. Establish the scope for the system design.

P2.2: Find and Specify Design Ideas: Identify and specify the initial
top-level design ideas to meet the requirements (see Chapter 7).

P2.3: Evaluate Design Ideas: Estimate the impacts of all the design
ideas on all the requirements (see Chapters 7 and 9).

Re-do P1 to P2.3, until a reasonable balance between requirements
and costs is obtained.

P2.4: Select Design Ideas and Produce Evo Plan: Produce an initial
overview, long-term evolutionary plan of the sequence of Evo steps.
That is, a plan for starting early delivery of required results by imple-
menting the design ideas in a series of small result cycles. Each result
cycle using, say 2% of total project time. (That is, each result cycle is an
Evo step. Note, an Evo step contains one or more design ideas.)

Determine the sequence of step delivery of the potential Evo steps. Do
this by calculating for each potential step, the performance to cost
ratio, or ideally you would use the ‘stakeholder view’ of the value to
cost ratio (the value being the benefits the stakeholders consider they
will obtain from the system improvements). Ideally, sequencing
should be in order of descending ratios, but consideration needs to
be given to any associated dependencies (see Chapters 7 and 10). Note
this plan will be modified, within the result cycles, using the feedback
provided by the results of implementing the design ideas (see below).

20 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

P3: Manage Evolutionary Project: Iterate Plan-Do-Study-Act
(PDSA) evolutionary result cycles until the exit conditions (below)
are met. Each result cycle implements the next Evo step and provides
feedback to modify the design, and maybe, to adjust requirements to more
realistic levels (within each result cycle, the processes Specify Requirements
and Determine Design are reiterated to carry out any more detailed work
required as part of the implementation of the Evo step, and to cater for any
changes required as a result of the feedback), (see Chapter 10, ‘Evolu-
tionary Project Management’).

Note: When using Evo, as long as the Evo result cycles are delivering to the
planned levels, the need for initial management review is considerably
decreased (if not eliminated) as the resource commitment for each delivery
step is only about 2% of the project total.

Exit Conditions

X1: The Generic Exit Conditions apply (see separate specification for
Generic Exit Conditions below).

X2: Cease doing Evo steps (P3) when either the stakeholder require-
ments are met, or resource budgets are exhausted. In other words, stop
when the performance requirements are met at planned levels, or
when resources (budgets) are ‘used up’ at their planned levels.

Generic Entry and Exit Process and Conditions

Here is a process that can be used as a generic entry process or a
generic exit process. The benefit of having one master generic process
is that it is easier to review and update.

Process: Generic Entry or Generic Exit

Tag: Process.GE.E or Process.GE.X.

Version: October 7, 2004.

Owner: Systems Engineering Process Owner.

Status: Draft.

Gist: A generic process description that applies by default to all entry
and exit processes.

Procedure

P1: Check all the conditions that apply.

P2: Note which conditions cannot be met.

Planguage Basics and Process Control 21

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

P3: Decide if we can or must ignore specific failed conditions
(waver).

P4: Attempt to correct, or help others to correct, any failed conditions
in need of correction.

P5: Report status of the process in writing.

P6: Help management understand the reasons for and the risks of
ignoring the problem of any failed or waved conditions.

P7: If management insists on overriding your advice, make sure
the responsible manager, after being informed of the risks, is
documented as overriding the formal process intentionally. (Make
sure we know who to blame later and then they take the respon-
sibility.)

P8: For exit only: Ensure any process improvement suggestions have
been submitted to the relevant process owners.

P9: Allow exit/entry when all conditions are either met or
waived.

Note: To simplify matters, no entry or exit conditions have been specified
for this process!

Generic Entry Conditions

Scope: For systems engineering, all specification entry processes.

Owner: Systems Engineering Process Owner.

User: Specification Author [Default User: SQC Team Leader].

E1: All logically necessary input information for complete and correct
specification is available to the specification author. This includes
up-to-date documentation regarding specification standards.

E2: All input documents have successfully exited from their own
quality control process.

Note: This usually implies between 0.2 and 1 maximum remaining major
defect(s)/page (A page is 300 words of non-commentary text). ‘Remaining
major defects’ is explained in Chapter 8, ‘Specification Quality Control.’

E3: The specification author is adequately trained or, assisted by a
qualified person.

E4: The specification author agrees that they are ready to successfully
carry out the specification work.

E5: There is appropriate approval, including funding, for the specifi-
cation process to proceed.

22 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

Generic Exit Conditions

Scope: For systems engineering, all specification exit processes.

Owner: Systems Engineering Process Owner.

User: Specification Author [Default User: SQC Team Leader].

X1: The specification author claims to have followed the specified
process description standard.

X2: The specification author claims to have followed all generic and
specific rules, which apply.

X3: Relevant SQC has been carried out and the quality level of each
output specification meets its stated SQC criteria. By default, the quality
level for any specification is that no more than 0.2 major defects/page4

may remain. (A page is 300 words of non-commentary text.)

Note, for some processes, there will be an explicit statement on SQC
criteria, which overrides this generic exit condition.

X4: As an additional optional measure, a cursory check of the speci-
fication by the author’s supervisor shows that there is reasonable
compliance with applicable rules. In practice, no major defects should
be found when a relevant sample (size and content) of the specifica-
tion is SQC checked for 15 minutes.

X5: Any process improvement suggestions identified have been sub-
mitted to the relevant process owners.

1.6 Principles: Generic Project

Principles are teachings, which you can use as guides to sensible action.
Here is a set of fundamental principles:

1. The Principle of ‘Controlling Risk’
There is lots of uncertainty and risk of deviation from plans in any
project.
You cannot eliminate risk. But, you can document it, plan and
design for it, accept it, measure it and reduce it to acceptable levels.
You may want to avoid risk, but it doesn’t want to avoid you.

2. The Principle of ‘Storage of Wisdom’
If your people are not all experienced or geniuses,
You need to store their hard-earned wisdom in your defined process.

4 A maximum of 0.2 remaining major defects/page is a very high standard. Beginners
should try for about 2.0 and work towards better levels.

Planguage Basics and Process Control 23

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

Capture wisdom for reuse,
Fail to write it, that’s abuse!

3. The Principle of ‘Experienced Geniuses’
If you do have any experienced geniuses, don’t just let them save
projects;
They should share their wisdom with colleagues, on how to avoid
failures.
Those who learn the hard way,
Should share their easy way.

4. The Principle of ‘Grass Roots Experience’
Your grass roots people will know what is wrong with your work
standards,
So let them suggest improvements, every day.
The soldier who has the boot on knows where it pinches.

5. The Principle of ‘Short and Sweet’
Keep your standards short and sweet,
A single page will do the feat.
Brevity is the soul of wit,
All essentials, a page do fit.

6. The Principle of ‘Don’t Refuse to Reuse’
Reuse good specifications, and don’t repeat them,
Once said suffices, no repetitious vices.
Write once, use many.

7. The Principle of ‘High Standards’
Have high standards for your work process entry, to save yourself
grief,
Have high standards for your work process exit, to your friends’
great relief.
Note work standard conditions for success,
Respect them; even in duress.

8. The Principle of ‘Quality In, From the Beginning’
Quality needs to be designed into processes and products,
Cleaning up bad work is a loser, but cleaning early is better than late.
A stitch in time still saves nine,
But an ounce of prevention is still worth a pound of cure.

9. The Principle of ‘No Simpler’
The optimum guidance lies somewhere between anarchy,
And too much bureaucracy.
Things should be as simple as possible,
But no simpler.5

5 ‘‘Physics/theories/things should be as simple as possible, but no simpler’’. Reputed
quote of Albert Einstein. Nobody seems able to prove he actually said it, but it is
acknowledged to be in his spirit. Calaprice, Alice [Editor]. 2000. The Expanded
Quotable Einstein. Princeton University Press. ISBN 0-691-07021-0.

24 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

10. The Principle of ‘Intelligent Insubordination’
A work process ‘standard’ isn’t a law, just good advice,
Ignore it, if you’ve better ‘words from the wise’.
Rules were made to be broken wisely.

1.7 Additional Ideas

Continuous Process Improvement

Conventional ways of getting control over systems engineering projects
include:

. resource allocation adjustment (time, people, talent, money,
sponsorship)

. ambition level adjustment (performance to fit within budgets)

. shift of responsibility (outsourcing, purchasing, contracting,
democratization)

. prioritymanagement (sacrificing some things to get others, tradeoffs).

There is a less-understood addition to these ideas: process control. It is
to get control over results by getting control over the work processes
producing the results. In concept, this is Statistical Process Control
with its famous Plan-Do-Study-Act (PDSA) cycle as taught by She-
whart, Deming and Juran (Deming 1986).

‘Process control’ is sufficiently well known within manufacturing.
However, surprisingly, it has not become conventional practice within
systems engineering. There are two main areas where its use is lacking.

First, process control is rarely exploited in the area of project
management. This is in spite of there being ‘software’ literature,
which documents good experience with process control since the

Plan Study

Act

Do

Entry
Process

Exit
Process

Check that
defined

Entry Conditions
are met

Check that
defined

Exit Conditions
are met

Carry out
defined Procedure

Figure 1.7
A simplified PDSA process cycle diagram as a basis for work process control, consisting of
an entry process, a procedure and an exit process.

Planguage Basics and Process Control 25

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

1970s: for example by Harlan Mills at IBM (Mills 1980), references
such as (Gilb 1988) and, even military IT standards within
the USA (such as MIL-STD-498 in 1994) (see Larman and Basili,
2003, for historical overview.) The problem is that this ‘software’
documentation is little known, having simply not been adequately
recognized in mainstream project management literature. (In fact,
there appears to be almost no reference at all to evolutionary project
delivery and process control. The Waterfall method unfortunately
dominates, according to my informal bookshop surveys and speak-
ing with professional project management people.)

Secondly, the PDSA cycle concept is also underutilized in systema-
tic process improvement. Use of numeric feedback for control is
often not understood and not practiced. This is, however, being
addressed in emerging standards for systems engineering and in US
DoD ‘Mandatory Guidelines’ (DoD Evolutionary Acquisition
1998).

The key concept is that if a well-defined process is followed, then
the process output performance levels will be a consistent and
predictable result of that process. If attempts are then made to
change the process, we can assume that systematically changed
performance results (hopefully, better levels and lower variability)
can safely be attributed to the process change, not chance. Unfor-
tunately this powerful concept is frequently ignored. The false
dogma is often spread that defined repeatable processes lead to
quality. (In fact, this is only the initial stage of achieving a stable
process, which is then ready for process change, as the prior
stability enables proof of the cause-and-effect of the change.)

It is important that work process standards be the vehicle for
continuous, systematic work process practice improvement (productivity
improvement). They must not remain static, when there is better
know-how. They must not stand in the way of improvement. They
must lead the way and teach the way. They must be easily changed
and frequently changed to incorporate better ideas quickly, and easily
adapted to suit changing circumstances or tailoring for local circum-
stances. The actual usage of work process standards must be mea-
sured, motivated and taught by using Specification Quality Control
(SQC) sampling. SQC measures specification conformance to
two classes of work process standards: official rules and exit/entry
conditions.

Normally no more than one significant deviation (one major defect/
page) from the specification rules should be allowed. Yet without
SQC, 100 or more major defects/page will be your fate. This may
seem astounding to people who have not measured it, but this, in my
experience, is the norm in most organizations throughout the world.

26 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

Continuous work process improvement for a large organization can
involve making changes to company standards and practices at the rate
of 1,000 ideas implemented per year – as documented at IBM,
Research Triangle Park (Mays 1995) and IBM Rochester (Minnesota)
Laboratories (IBMSJ 1994). This process change rate seems to result
in annual productivity increases of about 40%, as recorded for exam-
ple at Raytheon Defense Electronics over several years (Dion 1993;
Haley et al. 1995; see also Section 1.8 below; over the years studied, a
total productivity increase of 270% was reported).

EXAMPLE Calculating the effect of detected defects, if uncorrected, on the timescales of a project
At a major U.S. multinational in October 1999, eight managers did a sample SQC
on an 82-page system requirement specification. The only rules used were, ‘clear,
unambiguous, no design specifications in the requirements.’ They found about 60
major defects/page.
Assumptions: My SQC experience has determined that:

. only about one third of the defects that are really there will be found by staff
inexperienced in using SQC at the first pass

. each defect will result in ‘an order of magnitude’ extra work to fix when found
downstream.

It is also assumed that there are 200 days per year and 8 hours per work-day (1600
hours/year).
Using these assumptions, it can be calculated that the project will incur 82 (number of
pages)! 60 (number of defects/page),! 3 (as only a third effective in finding
defects),! 10 (number of hours/defect) additional hours correcting defects¼ 147,600
hours or approximately 92 person years.
We can assume the probability of a major defect actually resulting in an average
10 hour delay is about 25%–35%. So at 25% we would lose 36,900 hours.
For a project with 10 programming staff, this meant roughly two years’ delay.
We later that afternoon were told that the project using this ‘approved’ specification
was actually at least one year late, probably 2 years late. This had in fact been
predicted fairly accurately by our analysis, before we were told the reality!
In such an environment, simply continuing to fix specification defects as they are detected
is not the sensible option. Continuous process improvement needs to be used to drive down
the number of defects being injected into the specifications.

See also Chapter 8 and the Glossary for further detail on Specification
Quality Control (SQC) and the Defect Prevention Process (DPP).

Why Process Control?

– Use of Best Practice
– Reuse of Ideas

– Predictable Output from
Stable Process

– Rapid Dissemination of Changes
– Ability to detect any ‘Bad’
Process Changes

– Process Measurement and
Benchmarks

Not just ‘having a Process’, but using it as ‘a vehicle for Change’.

Planguage Basics and Process Control 27

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

1.8 Further Example/Case Study: Continuous
Process Improvement at Raytheon

This Raytheon case study outlines how measurable process
improvement can be brought about using Specification Quality Con-
trol (SQC) and Continuous Process Improvement. Within Raytheon’s
Equipment Division, software process improvements have yielded:

. a 7.70 US dollars return on every dollar invested

. a greater than two-fold (2.7!) increase in productivity

. as measured by the Software Engineering Institute (SEI) Capability
Maturity Model (CMM), an evolution from Level 1 (Initial)
through Level 2 (Repeatable) to Level 3 (Defined) process maturity
(and later beyond that).

More detail can be found in Raymond Dion’s account of the software
process changes within Raytheon (Dion 1993; Haley et al. 1995).

Background

Raytheon, a diversified, international, technology-based company, is
one of the 100 largest corporations in the US. The Equipment
Division is one of eight divisions, and 11 major operating subsidiaries
within Raytheon, with annual sales that comprise about 13% of the
corporation’s $9.1 billion annual sales. In early 1988, many Software
Systems Laboratory (SSL) projects were delivered late and over bud-
get. That year, the SSL rated itself at CMM Level 1 (Initial), using the
SEI capability-assessment questionnaire.

Aim

As a result, in mid-1988, the Equipment Division started a process-
improvement initiative within the SSL. Within the initiative, four
working groups directed the major activities: Policy and Procedures,
Training, Tools and Methods, and Process Database (metrics). The
initiative’s fundamental aim was the continuous improvement of the
development and management process. Their strategy was to use a
three-phase cycle of stabilization, control and change in accordance
with the (PDSA) principles of W. Edwards Deming and Joseph Juran.

Financing the Improvements

Discretionary funding (overhead, independent research and develop-
ment, and reinvested profit) was the chosen solution. However, in

28 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

order to convince management to persevere, this approach required
two important ingredients. First, there had to be some short-term
benefit to ongoing projects and, second, there had to be a meaningful
quantification of what the benefit was.

Measuring the Effects

In launching the initiative, they had to consider how individual small
improvements, implemented more or less in parallel, would interact to
produce a net loss or gain. They decided it would be easier to measure
the overall effect of change on the ‘bottom line’.

Calculating Savings

Raytheon used Philip Crosby’s approach (Crosby 1996) to analyze a
database of 15 projects. The analysis, indicated that they had eliminated
about $15.8 million in rework costs through the end of 1992 (four and a
half years). (Hewlett Packard, using this author’s SQC methods,
reported similar results (Grady and Van Slack 1994)). The Raytheon
appraisal costs (a term meaning cost of auditing, testing, reviews and
inspections) had increased by 5%. The increased rigor with which they
conducted design and code inspections (SQC), accounts for some of this
increase, but most of the Raytheon result is due to a 30% decrease in
total project cost, which has pushed up appraisal cost proportionally.

Early delivery of one Raytheon project was reported to have given
them a $10 million bonus from their customer. It was considered
entirely due to the initiative. There were several other tangible benefits
from the initiative. The saving in rework costs was only one of them.

30

25

20

15

10

5

0
88 89 90 91 92 93 94 95

D
ef

ec
ts

 p
er

 T
ho

us
an

ds
of

 In
st

ru
ct

io
ns

Years

Figure 1.8
Another benefit from the effort: overall product quality, measured by software defect
density, improved by about 3 to 1, from 1988 to 1995 at Raytheon (Haley etal. 1995).

Planguage Basics and Process Control 29

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

1.9 Diagrams/Icons

Specific Project
Specification

Language

Specific
Product

Specifications

Specific Project
Work Process

Specific
Process

Language

Generic
Work

Process
Descriptions
(RS, DE, IE,
EVO & SQC)

and
Rules

Specific
Project Work

Process
Descriptions

(including
Rules)

User-
Defined
Terms,
User

Metrics
& User

Variables

Project
Input

Specifications

Generic
Process

Language

Specification Language
‘Planguage’
Generic
Version
including
Templates

I
Planguage

as
presented

in this book

II
Project
Specific
Version

III
Project
Process

Project

Planguage

Figure 1.9
I. At the top of the diagram, the two main, generic components of Planguage, the
specification language and the process descriptions are shown. (These two compo-
nents correspond to the version of Planguage presented in this book.)

II. In the middle of the diagram, the specific version of Planguage (the project specifica-
tion language and project process descriptions) selected for use by a project is shown.
This specific version will have been tailored by the project. In addition, a project will
have user-defined data. The user-defined data will always be unique to a project. It
comprises the user-defined terms, actual numeric values (user metrics) and any user-
assigned, non-numeric variables of the project specifications.

III. The bottom of the diagram is a generic model of a project process. It shows how the
various components of the project specific version of Planguage (and the product
data) map onto the project process.

30 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

Some Basic Planguage Icons

Document or Specification

Process

Plan-Do-Study-Act Process Cycle

The four sides of the process icon symbolically represent the Shewhart
process-cycle definition of ‘Plan-Do-Study-Act’.

The process input/output axis is vertical and the process control axis is
horizontal.6 Specifications and other input materials are diagrammed as
entering from the north and exiting from the south. Previous processes
are connected from the west and subsequent processes are entered from
the east. These conventions are independent of the PDSA activities,
since one can enter and exit to and from any of these four process task
types. (That is, you can step on and off the cycle at any point.)

A rectangle

A rectangle with an upwards pointing
arrow on its left hand side.
The arrow reminds us of the cyclical nature of processes.

Do

Plan Study

Act

6 The traditional view as shown by Deming is a circle form with four arrows. I have
chosen the rectangle as it is easier to generate and has other nice properties. I hasten to
point out that Deming taught that it did not matter where in the cycle one entered a
PDSA process, nor where one exited, though he was not so concerned with exit, as he
viewed the cycle as an eternal process-control cycle, as long as there were competitive
pressures to improve things. I believe this is true and, so, I hope my choice of
representation does not inhibit the reader from entering and exiting processes wherever
convenient or realistic (P, D, S or A).

Planguage Basics and Process Control 31

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

Notes Supporting the Example of a Corporate Policy
Standard

1. Quantify Critical Success Factors:
All critical success factors (function, performance and resource)
for any activity (planning, systems engineering and manage-
ment) shall be expressed clearly, unambiguously, measurably
and testably at all stages of consideration: presentation, evalua-
tion, construction and validation.

2. Evaluate Risk:
In any planning or systems engineering work we shall explicitly
document all notion of suspected or possible elements of risk or
uncertainty, so nobody reading it can be in the least doubt as to
the state of our certainty and knowledge.

3. Assess Change Impact – To Exercise Control over Multiple
Dimensions of Performance and Budget:
All design ideas (strategies, system components, processes or
other devices) shall be evaluated with regard to their effects on
all the critical objectives and budgets. Initially, this should be by
estimates, which are based on facts and experience. On deliv-
ery, the design ideas shall then be evaluated by actual measure-
ments taken as early and as frequently as possible.

Corporate Quality Policy

1. Quantify
Critical Success

Factors

4. Ensure
Change Control

2. Evaluate Risk

3. Assess
Change Impact

7. Evaluate
Specification

Quality

5. Perform
Evolutionary

Project Management

6. Ensure
Continuous

Work Process
Improvement

Quality
Policy

Figure 1.10
Example of a corporate policy standard.

32 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

4. Ensure Change Control – Configuration Management and
Traceability:
All statements of objectives, budgets, design ideas, and esti-
mates and measures of the impact of design ideas on objectives
and budgets shall be captured with explicit detailed information
as to their sources, so that detailed change control is made
effective and efficient.

5. Perform Evolutionary Project Management:
All projects whether concerning organizational issues or product
development, shall be controlled by a Plan-Do-Study-Act pro-
cess control cycle. They shall have small increments of cost and
time (in the 2% to 5% range normally) before attempting to
deliver useful customer increments of function and/or perfor-
mance improvement (at least some sort of field trial). Where
there is any choice of incremental step content we shall choose
the increment which gives the greatest quantified impacts in
total on all critical customer or project objectives, with least
resource expenditure.

6. Ensure Continuous Work Process Improvement:
Practical priority will be given to measurable continuous
improvement of all work processes in systems engineering, man-
agement and other company activities. Plans for type and
degree of improvement will be budgeted; and progress towards
improvement objectives will be measured. The ambition level will
be world-class levels and to be the leader in any area. As a
practical matter all employees are expected to participate in
analysis of current defects found by quality control (for example,
specification quality control (SQC) and test) and to spend effort
improving the current work environment to eliminate 50% of the
current defects every year over the next few years.

7. Evaluate Specification Quality:
All documents, capable of producing a significant impact on our
performance levels, must be evaluated using the best available
quality control process. These documents must meet an appro-
priately high quality standard (that is a low numeric value for the
‘maximum possible remaining major defects/page’ as specified
in our written standards and policies) before being released to
any internal or external customer for serious use. The ultimate
release level shall be state of the art (between 0.3 and 3.0
remaining major defects/page).

1.10 Summary: Planguage Basics and Process
Control

This chapter has provided an introduction to Planguage and, hope-
fully, set the rest of the book in context. The main Planguage concepts

Planguage Basics and Process Control 33

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH001.3D – 1 – [1–34/34] 29.6.2005
12:36PM

introduced in this chapter have been processes and continuous process
improvement through use of process standards. Many examples of
process standards will be found throughout this book. They aim to
provide practical, step-by-step advice on how to implement Plan-
guage.

Planguage is not a prescription of how I feel you should do things. It is
a framework for you to discover how you best can do things yourself.
Planguage is open for change from any source, at any time, for any
good reason. It is intended to be totally in tune with the need for
continuous improvement of all competitive systems and processes.

If Planguage doesn’t save time and effort and improve quality, it fails.
Don’t use it! Please do not misunderstand Planguage as if it is an
‘imposition of a lot of bureaucratic detail.’ I hate bureaucracy as much
as you do! But I hate failure even more. So, I am willing to use the
Planguage disciplines; I find that they pay off and make my profes-
sional life easier and more successful. (Note: The Planguage methods
actually work in most problem-solving situations; they can even be
used in your personal life too!)

Planguage is concerned with getting control over things. If you want to
be more in control of your work, Planguage has many practical
techniques to help you. It takes some learning. It takes some work to
implement. It takes time to change the culture around you.

In fact, human culture changes can be frustratingly slow; they can take
years! But if you don’t start this evolutionary process now, this week,
this project, then the problems will get worse, not better. Can you
afford to ignore the evidence from several major corporations, such as
Raytheon, that continuously improved best practice standards can
lead to substantial improvements in your team productivity annually
over the next few years?

34 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 29.6.2005
12:37PM

Chapter

2

INTRODUCTION TO
REQUIREMENTS

Why?

GLOSSARY CONCEPTS

System
Stakeholder
Requirement
Attribute
Vision
Function
Performance
Objective
Quality
Resource Saving
Workload Capacity
Resource
Cost
Budget
Design Idea
Condition
Target
Constraint
Benchmark

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 29.6.2005
12:37PM

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 29.6.2005
12:37PM

2.1 Introduction to Requirements Specification

Peter Morris, having studied numerous projects in the US and UK
covering the period from 1940 to 1990, identifies that one of the
major causes of project problems is that our current management and
engineering culture consistently fails sufficiently to articulate require-
ments or cope with change in them (Morris 1994).

More recently, in 2001, having conducted a thorough review of the
recent systems engineering industry literature, Ralph Young con-
cludes that the causes of project failure are ineffective practices for
handling requirements. He estimates the necessary improvements in
such practices could be financed by approximately one third of the
current total cost of project failures. Additional gains would be that
customer satisfaction and the quality of results would also improve
(Young 2001).

You probably feel that you need to ask more probing questions about
the project requirements that you are working on. You are likely,
unfortunately, to be able safely to assume that nobody in your senior
management and none of your customers has a well-developed sense
of exactly what requirements they really want or need. They may all
have the dangerous illusion that they do. However, they are unlikely to
have a clear enough requirement specification. Nor are they likely to
have requirement ideas which are ‘shared precisely’ by all their col-
leagues and the other stakeholders.

Definition of Requirements

Requirements give information to the system designers and to a wide
range of stakeholders. They state what the stakeholders want the
system to achieve.

Requirements can be classified into ‘requirement types’ as follows:

0. Vision: at the highest level, the future direction for a system.
1. Function Requirements: what a system has to ‘do’: the essence

of a system, its mission and fundamental functionality.
2. Performance Requirements: the performance levels that the sta-

keholders want – their objectives. How good? These can be
further classified as:

. Qualities: how well the system performs, for example: usability,
availability and customer satisfaction.

. Resource Savings: the required improvement in resource util-
ization: relative economic and other resource savings com-
pared to defined benchmarks. These are known simply as
‘Savings.’

Introduction to Requirements 37

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 29.6.2005
12:37PM

. Workload Capacities: how much the system performs. In other
words, the required capacity of the system processes. For
example, system peak processing volumes, speeds of execu-
tion and data storage capacity.

3. Resource Requirements: the levels of resources that stakeholders
plan to expend to develop and operate a system. Resources have
to bebalancedagainst the stakeholders’ perceived values gained
from the system functions and the system performance levels.

4. Design Constraints: these are any design ideas that must be
included in the system design.

5. Condition Constraints: theseareany additional constraints to those
imposed by the function requirements, the performance require-
ments, the resource requirements and the design constraints. Con-
dition constraints are often used to capture system-level constraints
(for example, ‘the system must be legal in Europe’).

From the viewpoint of understanding ‘competitiveness’, ‘levels of
achievement’ and ‘associated risk,’ the performance requirements
are by far the most interesting requirements. Yet, traditionally, too
much attention has been given to specification of function require-
ments and resource requirements (such as financial budgets, deadlines
and headcounts). We need a more balanced requirement specification
that includes all targets and all constraints. They all need to be equally
clear and equally capable of being tested.

Key Issues for Requirements

Here are some key issues to consider when using or specifying
requirements:

Identifying the critical stakeholders

Failing to identify the critical set of stakeholders is a common problem.
The stakeholders for a system are anyone affected by the system or
who can impact the system. This includes system users, maintainers,
financiers, managers, developers, critics and others. If you fail to
consult and analyze the critical stakeholders, then your requirements
will risk being dangerously incomplete. By definition this will threaten
the existence of your system, or at least its profitability.

Hint: Consider the entire lifecycle (including retirement or replacement)
of a system or product when looking for stakeholders. Identify different
categories of stakeholder (for example, internal and external (including the
more remote) stakeholders).

(Use the Authority, Source and Stakeholder parameters to specify the
stakeholders.)

38 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 29.6.2005
12:37PM

Separating ends and means

It is important to distinguish ‘ends’ (requirements) from ‘means.’
‘Means’ are the design ideas we choose: the architecture, technology,
strategies and other synonyms (They are whatever is needed to achieve
the requirements).

It is common to find design ideas included within requirement
specifications. I call them ‘false requirements’. Only if the design idea
is an intentional, conscious design constraint should it be in a require-
ment specification.

All ‘false requirements’ should be removed from requirement specifi-
cations. They should then be investigated; to see if they reveal other
hidden additional requirements, which ought to be included (see the
example in Section 2.8. See also Chapter 3, which discusses separation of
functions from design ideas).

Identifying the key requirements

You must try to identify the stakeholder requirements which are either
‘vital’ (system threatening) or ‘profitable’ or ‘highest risk’ for your
system. Key requirements have the greatest impact on your most
critical stakeholder values and system costs. You do not need (that
is, are not economically obliged) to seriously consider implementing
any other stakeholder needs than these.

Hints: Look for areas with potentially high development or operational
costs. Ask the stakeholders for their opinions on their most crucial
requirements.

Note: The concept of identification of the few key requirements (I often use
the concept ‘Top Ten’) does not mean that they will not need to be
decomposed into more elementary requirements (see below, Handling
Complex Requirements).

Remember, for many projects, even delivering a single top objec-
tive on time and to financial budget, would be an advance on their
current experiences!

Quantifying success and failure

Requirements need to be understood in terms of success and failure
levels. You must ensure you have quantified numeric values specified
for each of your performance and resource attributes. Knowledge of all
the targets (‘what we aim for’) and constraints (‘the limits we need to
respect’) is vital for both system design and project management. You

Introduction to Requirements 39

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 29.6.2005
12:37PM

need to understand exactly what level of achievement is expected and
then design towards it. Specifically:

. Success: You also need to know when you have met your required
levels of requirements. Reaching each single planned level is ‘partial’
success. Your project is a complete ‘success’ when all success levels
are met, for all performance goals, within all budgets. (Success levels
are targets specified using Goal and Budget parameters.)

. Failure: You need to specify the attribute levels that you have to
reach in order to avoid some type of stakeholder failure (such as ‘fail
to get desired market share’). (These are constraints stated using Fail
parameters. They are not as critical as the Survival constraints).

. Survival: You need to determine and specify the numeric limits
which would classify your project as a total failure; so all stake-
holders know the minimum survival requirements (These are con-
straints expressed using Survival parameters). These become your
highest priority requirements, as they are key to your project’s
continued existence. Survival is a higher priority than success!

. Potential: It is also useful to keep a record of desired, but uncom-
mitted and unbudgeted, requirements. Knowing these, even when
you cannot deliver them immediately, is key to being the first one to
deliver them when it does become possible. (These are specified using
the parameters, Stretch – a deliberate engineering challenge set for the
system engineers – and Wish – an expression of the levels which
stakeholders ‘dream of ’.)

See Chapters 4, 5 and 6, which describe how to quantify performance
requirements and resource requirements using the Scale, Goal or Budget
(success), Fail (failure), Survival (survival), Stretch (challenge) and Wish
(dream) parameters.

Understanding the past and the future – benchmarks and
state-of-the-art

You need to understand the context of your requirements. What are
the current ‘benchmark’ performance levels of your existing system
and competitors’ systems?

Hint: There is always some existing system to usefully benchmark!

Are your plans ambitious enough? Are they state-of-the-art? How do
they measure up to your known competitors? How do they fit with
current trends in technology? You need to know these factors to
understand the level of risk involved and the likely costs. State-of-
the-art implies doing something nobody else has yet achieved. This
means that costs and success are both uncertain. Don’t let that stop
you! However, do plan to control this situation rigorously.

40 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 29.6.2005
12:37PM

See Chapter 4, which describes how to express benchmarks, trends and
state-of-the-art levels using the Past, Trend and Record parameters.

Considering the timescales for delivery of requirements

To assess whether your requirements include adequately specified
‘time conditions’ (dates), you should ask questions, such as: How
early are the stakeholders going to receive some benefits from this
system? Are the requirements specified for the short term needs only?
Are unrealistically long investment timescales set?

Most importantly, you should plan the early delivery of some require-
ments to some stakeholders. There ought to be a steady stream of
value delivery throughout the project life.

Hint: Analyzing the requirements of the different stakeholders is one way
to identify the opportunities for early deliverables. (See also Chapter 10 on
Evolutionary Project Management.)

EXAMPLE One client ‘delivered’ a mobile telecommunications ‘base station’ eight months
‘early’ to its system installers (an internal stakeholder), who were scheduled to install
it ‘for real’, later, in Japan. The installers immediately discovered many serious
installation problems, which would have delayed installation. The development
project (another internal stakeholder) then had eight months to fix these problems
and, not surprisingly, the ultimate system was successfully installed on time (Erics-
son, Case Study, 1992, ‘On Succeeding’, Internal Publication) (Järkvik et al. 1994).

Avoiding the ‘ambiguity trap’

Beware requirements that are so ‘general’ that there is no clear idea of
exactly what is required. Everyone can agree to them! For example,
‘increase security,’ ‘make the system more user-friendly’ and ‘provide a
competitive edge.’

The problems due to vague requirements will inevitably arise later,
because everyone’s interpretation of what the ‘general’ terms actually
mean is different. The lack of precise definition means that the differ-
ences of opinion are not confronted at an early stage, during specifica-
tion, and the differences are unspecified. No one has really agreed to the
exact requirements and nobody is doing anything about it.

All too often, projects deliberately allow ambiguous specifications to
be used, without clarification and agreement. There is the ‘illusion of
progress being made.’ The requirements are ‘complete and agreed’; we
think?

This problem of ‘ambiguous requirements’ has to be tackled both by
communication and by action. Clarifying all the key requirements, as

Introduction to Requirements 41

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 29.6.2005
12:37PM

discussed above, helps. However, as a means to get the ‘right’ require-
ments, clarification is no substitute for evolutionary delivery (see
Chapter 10). Frequent and early delivery steps allow stakeholder feed-
back and correction of bad (vague or irrelevant) requirements and
designs. The relevance of the project work to your organization has to
be checked: early, measurably and frequently.

Handling complex requirements

Ambiguity (‘different interpretations are possible’) is one trap. But an
entirely different trap exists in losing control of a project because you
are operating with too few detailed requirements. The degree of detail
you will need to specify is dependent on the size and criticality of what
you are trying to control, as well as on the degree of risk you are
willing to accept.

It is a balancing act. You must keep your attention firmly rooted on
the few critical (key) requirements, while ensuring there is adequate
background detail to permit you sufficient control. You can do this by
specifying a set of complex requirements (the ‘Top Ten’) and, then
splitting each of them into their more detailed ‘elementary’ compon-
ents. You then can create any number of useful system views (such as
‘Risks’, ‘Bottlenecks’ and ‘Progress’) with appropriate detail for your
project management purposes.

Don’t get overwhelmed by the system detail. Capture it. But, always
remember to ensure the focus is on your stakeholders’ critical
requirements.

Allowing requirements to evolve

Real requirements change. There is no way you can stop them! As you
run a project or deliver to initial stakeholders, you will get new insights
into which requirements are actually useful. Stakeholders, too, will learn
from their early experiences using a new system, what they really want.
Business requirements will also inevitably change over time, in response
to both the internal and external business environments.

For all these reasons, requirements must be allowed to evolve during a
project, and during the system lifetime. You are not obliged to
implement any changes to the system instantly. You can do so at the
‘right’ time. But, it is essential to keep the specification of requirements
realistic and up to date. They must reflect current reality. You should
not freeze the requirement specification! You can always choose to
design, or build or test from a given version of the requirements,
temporarily ignoring any updates.

42 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 29.6.2005
12:37PM

For contractual and other sound reasons, you should always ensure
that you document the evolution of requirements (for example, by
using automated requirement specification tools that track changed
versions).

You need also to build a web of relationships between requirements,
designs, stakeholders and project plans. This will make it safer to
evolve and change, as you will be better able to identify any potentially
damaging side effects and to recognize the most competitive change
possibilities. (Planguage offers a wealth of devices for making require-
ment relationships explicit. For example, by using qualifiers and par-
ameters, such as Authority, Source, Dependency and Impacts.)

2.2 Practical Example: What is ‘Flexibility
Improvement’?

Analyzing a requirement

You are told that a change is proposed to ‘improve flexibility’ within an
organization. The stated aim is that it will help you be more competitive
by enabling ‘faster tailored product releases.’ You are not quite sure what
this means. You decide to analyze and challenge the statement.

You first give the subject ‘improve flexibility’ an identity. Call it any
name you like. For simplicity (and to show we are addressing the
specified concerns), let’s call it ‘Flexibility.’

This could be written as:

Tag: Flexibility.

However, we usually drop the explicit use of ‘Tag’. So it (initially)
looks like this:

Flexibility:

To which you could add any relevant information that comes with the
idea, or which can be gained by asking key people a few simple
questions. For example:

Type: Quality Requirement.
Gist: To improve flexibility of product releases to the market <-
Marketing Director.
Authority: Marketing Director request.
Rationale: Supports ‘Time to Market’.

Note: The ‘Gist’ parameter is used to capture a short description of a
tagged concept.

Introduction to Requirements 43

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 29.6.2005
12:37PM

Then you can try to write down approximately what you think
Flexibility means. Then get others to write down what they think
it means. Try to get a group to agree to some appro-
ximate definition. Write an agreed brief description for the
‘improvement ambition level.’ The description might come out
like this:

Flexibility:
Ambition: Substantial improvement in the ease with which we can
change products and markets <- Requirement Owner: Jane.

Note: ‘Ambition’ is an alternative parameter to use instead of ‘Gist’ for a
quality target (goal). ‘Ambition’ should express the level of ambition in
words.

Now, from this, the function requirements can be identified as being to
‘Modify Product’ and to ‘Switch Market.’ These are the functions,
which we specifically intend to make ‘flexible’. (See also Chapter 3,
‘Function Requirements.’)

We can express these ideas in Planguage as follows:

Type: Function Requirement: {Modify Product, Switch Market}.

Modify Product -> Flexibility.

Switch Market: Supports: Flexibility.

Note: The two formats of the ‘Supports’ concept are illustrated. The ‘->’ is
a keyed icon format.(It is also used as an icon for Impacts.)

Further work can be carried out to establish the precise ‘Flex-
ibility’ requirements. For example, are completely new products
envisaged or is it just the existing products? Are the target
markets already established? It is likely that the critical stake-
holders already have ideas about where effort is to be directed. Is
there a specific current problem or is this a longer term, more
global aim?

Next, you can add a statement regarding which of the higher level
objectives would probably be impacted, in interesting ways, by
improved Flexibility. For example:

Flexibility:
Ambition: Substantial improvement in the ease with which we can
change products and markets <- Requirement Owner: Jane.
Supports: Performance: {Time to Market, Market Share, Customer
Brand Perception, Product Upgradeability} <- JBG assertion.

Note: ‘<-’ is the ‘Source’ keyed icon. You should use it to document where
any information comes from. ‘{ . . . }’ is a convenient way to signal a set of
things that belong together in some way.

44 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 29.6.2005
12:37PM

Also any impacted cost requirements should be identified. For example:

Is Supported By: Cost: {Architecture Development Costs, Research
Costs}.

Each of these impacted requirements might be considered for expan-
sion into a set of lower level requirements. For example, the quality
requirement, Product Upgradeability (mentioned above) could be
expanded as follows:

Product Upgradeability:
Type: Complex Quality Requirement.
Consists Of:

{Key Upgradeability:
Gist: Improve delivery of <upgrades> meeting <customer> <key

requirements>,

Acquisition Upgradeability:

Gist: Increase new product acquisition with aim to supply
<customer> <key requirements>,

Customer Installability:
Gist: Improve ability of<customers> to install the<upgrades>, other? }.

Note: words in fuzzy angle brackets (< >) denote words that we feel
require additional definition.

This is a simple identification of the various factors, which make up
Product Upgradeability. If we agree on them, they can be worked on,
to become more specific. The aim is that at some stage, each of these
requirements is specified with clear numeric targets that define it more
precisely than just using words.

Decomposition of Requirements

It may well be the case that each requirement needs to be
expanded into a further set of requirements. These, in turn, may
also need expanding resulting in a whole hierarchy of require-
ments.

At some stage, you identify the requirements that you do not
wish to decompose, or you are simply not able to decompose,
because they are the lowest levels of the hierarchy. Requirements
at the lowest level of a hierarchy are termed ‘elementary require-
ments.’ Note: that it is not necessary to identify all the elemen-
tary requirements. It is a question of finding the set of
requirements, elementary and complex, that best suits your cur-
rent purposes.

Introduction to Requirements 45

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 29.6.2005
12:37PM

Scalar Requirements

If the requirement concept can be described by ‘words implying
measurement’ (for example ‘improve,’ ‘better,’ ‘equal to’ and
‘reduce’), then that requirement is clearly definable in terms of
‘degrees of goodness.’ Once you have identified such a ‘scalar’ require-
ment, the next stage is to improve the definition by quantifying it.
You need to find (maybe create) a scale of measure that expresses a
unit of measurement for the requirement. Use a ‘Scale’ parameter to
specify your scale of measure.

If you identify several complementary scales of measure, for a single
requirement, then you actually have a ‘complex requirement’, and you
should consider specifying its set of elementary requirements in detail
(that is, each elementary requirement has its own Tag and Scale).
Note, the set of elementary Scales is the variable ‘idea’ that describes
the complex requirement. The scales of measure within a set don’t
‘add up’. They don’t have to.

Using your chosen scale of measure, you can try to represent the
current and past levels of performance (the benchmarks) and the
desired future states (the performance targets). You do this by defining
some specific numeric levels. (See Chapters 4 and 5 for further
explanation.)

EXAMPLE Cost to Upgrade Products:
Type: Savings Requirement.
Scale: Total cost, in % of annual profit, needed to develop <new products>.
Past [Last Year]: 4%. ‘‘Current level, a benchmark.’’
Goal [Next Year]: 3% <- Technical Director: JG. ‘‘Future desire, a target level.’’
Defining a scale of measure and using it to specify two points (Past and Goal) to describe
the degree of improvement in ‘Cost to Upgrade Products.’ Note: 1. That although this
involves a resource – it is actually setting an organizational performance requirement (an
objective) that we need to specifically plan to achieve (by finding relevant strategies).
2. The [. . .] brackets (qualifiers) are helping to define ‘when’.

You don’t have to worry about the exact truth about requirements if it
is not easily available. It never is! But each specification step you take
should make things somewhat clearer (even if it is only to help make
other major defects in the requirements clearer). You should always be
totally honest about your uncertainty and about your sources of
information. If it seems worthwhile, you can always get more detailed
and be more exact at a later stage.

Hint: Discussing your scales of measure with your stakeholders might be
helpful.

46 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 29.6.2005
12:37PM

You may be surprised about our definition of ‘Flexibility,’ but it
means exactly what we define it to mean. The tag, ‘Flexibility’ is just
an arbitrary reference to the definition (the tag is a ‘symbol’, like all
our human words). If you don’t like the tag, change it. How does
‘Product Development’ strike you? You can even have multiple syno-
nym tags for any concept, if that helps you communicate better with
different specification readers. Use what works for you!

2.3 Language Core: System Attributes and
Requirement Specification Types

System Attributes

There are several main Planguage specification types that we need in
order to describe a system. Let’s now look at the definition of these
terms before considering how to specify requirements.

System

A system can be described by its set of function attributes, perform-
ance attributes, resource attributes and design attributes. All these
attributes are can be qualified by conditions, which describe the time,
place and event(s) under which the attributes exist.

Attribute

An attribute is a characteristic of a system. Any specific system can be
described by a set of past, present and desired future attributes.

There are several different types of attribute. These include:

. Function attributes defining what a system does (mapping to the
processes).

FunctionResource Performance

Design
(Architecture)

C
o
n
d
i
t
i
o
n

C
o
n
d
i
t
i
o
n

Figure 2.1
The basic system attributes describing a system.

Introduction to Requirements 47

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 29.6.2005
12:37PM

. Performance attributes defining how well or how much a system
performs (such as usability, availability and response time). How
good or how effective it is.

. Resource attributes defining what quantity of resources a system
requires, or what costs are incurred (such as development costs,
operational costs and human effort).
Resources are our necessary and potential fuels, and costs are the
experienced or planned expenditures (‘budgets’) of these limited
resources. Resources are a broad category of effort, time, data,
materials and money.

. Design attributes, defining the system architecture for a system.

Note: Very often in this book, the term ‘attribute’ is implied. So ‘performance
attribute,’ ‘resource attribute,’ ‘function attribute’ and ‘design attribute’
become, for short, ‘performance,’ ‘resource,’ ‘function’ and ‘design,’ respectively.

Function

A function is an action of a system or system component. Elementary
functions are ‘binary’ in nature: they are either present, or not, in
specifications or in real testable systems.

Each function has a set of associated performance and resource attrib-
utes, which make it useful and competitive in the real world. How-
ever, a ‘pure’ function is ‘what? ’ a system does, without regard to
either ‘how well? ’ or ‘how much? ’ (the resulting performance attri-
butes) or ‘what resources? ’ (the resource attributes that will be utilized
or consumed).

Note: My definition of ‘function’ is likely to differ from your current
definition. I specifically separate the four descriptive system attributes
of function, performance, resources and design from each other. My
justification is that this separation enables us to obtain better focus
within the ‘design engineering’ process.

Design engineering needs to be able to satisfy many competing
performance and resource attributes, simultaneously. Separating the
‘multiplicity of concerns’ helps identify all the individual concerns;
and this in turn, helps ensure they are all considered. This leads to
more competitive designs.

If we (mis-)use ‘function’ in an informal manner, to describe ‘designs’
and ‘features’ of a system (which is, unfortunately, common practice),
then we fail to see the essential distinctions amongst a ‘function
requirement,’ an ‘optional design’ or, even, a ‘design constraint.’
The result is that the design process is corrupted, and weaker designs
result since the designer has less understanding of the real design
options.

48 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 29.6.2005
12:37PM

EXAMPLE User Interfacing:
Type: Function.
Gist: All basic user-accessible input and output capabilities within the system.
Note: This does not include the specific system interfaces (the human–computer interface
design ideas), which will be developed during the project, based on field trial feedback.
A simple function specification.

Performance

A performance attribute is a ‘potential effectiveness’ attribute of a
system. It is ‘how good ’ a system is, in objectively measurable terms.

Performance attributes:

. are valued by defined stakeholders

. are always capable of being specified quantitatively

. are variable (along a definable scale of measure)

. can be a complex notion, consisting of many elementary perform-
ance attributes

. can be traded off to some degree, by varying their level, against the
resources and/or the other performance attributes. The relative
priorities of performance attributes are a question of ‘which attri-
butes are more valued’ by the defined stakeholders.

Performance levels only partly determine how effective a specific
version of a system is, for a specific stakeholder’s needs. The practical
stakeholder environment determines the ‘final’ effectiveness that a
performance attribute can contribute to. For example, more system
speed will not always translate into earlier delivery of specific users’
results. And, increasing the average system reliability will not always
translate into more reliability, from a specific user’s practical point
of view.

Another way to express this is that performance in one component of a
system does not always translate into the same level of performance in
a larger environment. (Compare to the well-known circumstance of
the effectiveness of an engine on an icy road or, for that matter, the
effectiveness of your mind when put into a noisy environment.)

There are three types of performance attribute: quality, resource saving
and workload capacity. These are described as follows:

. Quality: A quality attribute describes ‘how well’ a system
performs. Examples of qualities are availability, usability, cus-
tomer satisfaction, staff development, environmental impact and
innovation.

. Resource Saving: A resource saving is a measure of
‘how much’ resource is ‘saved’ compared to some reference or

Introduction to Requirements 49

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 29.6.2005
12:37PM

benchmark system. Resource savings are measures of performance,
which describe system costs in relation to alternative costs. They are,
you might say, a way of viewing relative costs for two systems at
once, rather than the absolute costs of one system alone; one system
will be the target system and, the other system will either be a past
benchmark system or a competitor’s system.

EXAMPLE This new car has 10% better fuel consumption than the last model.

EXAMPLE The cost per transaction for System X [New Version] might be 100 dollars, but the
savings for System X [New Version] might be expressed as ‘50% less cost’ compared
to System X [Last Version], which cost 200 dollars per transaction.

Other examples of resource savings include:

o operational savings of any resource (such as effort, money, time,
materials and space)

o capital investment savings (say, for activities such as for launch,
training, installation and acquisition).

. Workload Capacity or Capacity: A workload capacity attribute
describes ‘how much’ a system can do. Workload capacity describes
the potential workload a system can tolerate.

Workload capacity attributes include:

o Throughput capacity: how much work can be done
o Storage capacity: how much information can be contained
o Responsiveness: how fast the system responds.

Resource

A resource is a system ‘input fuel’ attribute.

Resource is used as follows:

. to ‘start up’ or get a system going – expending a ‘capital cost’ –
investment

. to keep a system functioning (using or expending a resource is an
‘operational cost’)

. to bring about change in a system (expending a development or
maintenance cost).

‘Cost’ is the degree of a resource used (a cost benchmark) or planned
to be used (a cost budget or resource budget). For example: time, work-
hours, talented people, investment capital, staff costs, development
costs and operational costs.

50 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 29.6.2005
12:37PM

Resource attributes:

. are capable of being specified quantitatively (for example, ‘resource
use limits’ and ‘cost plans’)

. are variable (along a definable scale of measure)

. can be a complex notion, consisting of many elementary resource
concepts

. can have complex resource targets specified (there can be specific
resource allocation, using ‘qualifiers’, regarding when, where and
under which events it can be used)

. can be traded off, to some degree, against the performance attributes
and/or the other resource attributes.

Note: Many characteristics of a resource attribute are identical to those of
a performance attribute. The difference is that one is a ‘means’ (resource)
and the other is an ‘end’ (performance).

Design

The design of a system is also an observable system attribute. You can
look at any system and ask, ‘‘What is its design?’’ This knowledge is
useful for the following reasons:

. it explains how to reproduce the system

. it can explain the current performance levels and cost levels

. it can give you insights as to the ease of making specific design changes
or the need to upgrade specific components.

The design of a system can be specified at any number of levels: from
high-level strategies and architecture to low-level, detailed system
components. The precise terminology used is a matter of culture
and taste: a design attribute is anything that impacts the functionality,
performance and/or costs of a system.

In Planguage, a system design is modified by implementing a series of
Evo steps. Each Evo step can have one or more design ideas. A ‘design
idea’ is the primary output of a design process. It is the generic name
for any proposed design strategy, or system component, that we need
to identify, to specify, to analyze and perhaps to implement in order to
address the problem of reaching our stakeholder requirements. More
simply: design ideas are our ‘tools to reach our ends.’ It is any idea or
strategy, which possibly contributes to the ‘design solution.’

Requirement Types

Above, we looked at a system (or project) from a descriptive point of
view. This is also the benchmark view of a system, a view that we will

Introduction to Requirements 51

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 29.6.2005
12:37PM

integrate with the specification of requirements. Below, we shall look
at the same concepts in terms of how to specify what we want in the
future.

Vision

At the highest level, there should be a vision statement for a system. A
vision or vision statement is a specific, long-range, overall category of
requirement. That means it can concern itself with future mission
and/or targets and/or constraints. It is a leadership statement for focus
and motivation. Visions are often defined in broad summary terms.
For example, ‘become world class.’ But there is no reason to be so
vague. Great practical visions1 are extremely concrete:

‘‘I believe that this nation should commit itself to achieving the goal,
before this decade is out, of landing a man on the moon and returning
him safely to the earth.’’

John F. Kennedy.
Delivered before a joint session of Congress, May 25, 1961.2

‘‘I believe that we must improve the numeric level of all critical product
and service qualities by an order of magnitude by the end of the decade in
order to remain competitive.’’3

John Young,
CEO Hewlett Packard Company, April 1986.

Known at the ‘10X’ policy.

‘‘We shall go on to the end, we shall fight in France, we shall fight on the
seas and oceans, we shall fight with growing confidence and growing
strength in the air, we shall defend our island, whatever the cost may
be, we shall fight on the beaches, we shall fight on the landing grounds, we
shall fight in the fields and in the streets, we shall fight in the hills; we
shall never surrender.’’

Churchill, June 4, 1940.4

A vision will ultimately need to be decomposed into specific require-
ments such as measurable objectives with quantified goals. Using
qualifiers, these requirements can, as necessary, be tied by specification
to specific times, locations, components and events of the system.

1 See also the Martin Luther King Jr. vision in the Glossary under Vision.
2 FROM http://www.jfklibrary.org/, Special Message to the Congress on Urgent
National Needs, President John F. Kennedy, delivered in person before a joint session
of Congress, May 25, 1961.
3 This is the best rendition available in consultation with HP – Tom Gilb.
4 The Oxford Dictionary of Quotations, Third Edition with Corrections 1980. Oxford
University Press.

52 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 29.6.2005
12:37PM

EXAMPLE Vision 1:
Vision [By Next Year, Software Products]: 30,000 hours mean time between failure
<- CEO in last Annual Report.
‘‘30,000 hours mean time between failure for software products by next year.’’

EXAMPLE Vision 2:
Vision [Within Next Three Years, Key Products]: Order of magnitude reliability
improvement <- Technical Director.
‘‘Order of magnitude reliability improvement in our key products within three years.’’

Once a vision is in place, specific strategies/design ideas can then be
evaluated against it, as potential solutions.

(See Glossary or Chapter 3, ‘Functions,’ for discussion of ‘mission.’)

Basic Requirement Types

Once you have a vision statement providing the overall direction
for a system, you can start capturing the specific requirements for
change.

There are the following basic requirement types:

(These basic requirement types have been already outlined in the intro-
duction to this chapter; here they are discussed in more detail.)

FunctionResource/Cost Performance

Design
(Architecture)System Attributes

(Present or Past)

System Requirements
(Future Attributes)

Vision

Resource Requirement Performance Requirement =
Objective

Function
Requirement

Design Constraint

Performance
Constraint

Performance
Target =

Goal

Function
Constraint

Function
Target

Resource
Constraint

Resource
Target =
Budget

C
o
n
d
i
t
i
o
n

C
o
n
s
t
r
a
i
n
t

C
o
n
d
i
t
i
o
n

C
o
n
d
i
t
i
o
n

C
o
n
s
t
r
a
i
n
t

C
o
n
d
i
t
i
o
n

Mission

Figure 2.2
Mapping of system attributes to requirements.

Introduction to Requirements 53

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 29.6.2005
12:37PM

1. Function Requirement: what a system has to ‘do.’
Function requirements are the functions that are fundamental to
the system, the marketplace or the contract we have undertaken. In
competitive product areas, the functionality defines ‘the market we
are in,’ such as ‘Producing mobile phones.’ All our competitors
probably have identical functionality.

Note, ‘functionality’ does not mean design features and quality; it
means pure basic function. The competitive product differentiators
are the performance levels and costs, not function. A function
requirement is a function that is either declared by the stakeholders
to be required, or is formally recognized by all stakeholders as a
fundamental function of a system.

Function requirements can provide a framework, rather than sim-
ply stating the precise functions required. A function requirement
could specify some set of functions (for example, ‘All Competitor X
functions’). It could also specify functionality that is not required,
(for example, ‘No Games’).

(See Chapter 3 describing Functions and Function Requirements.)

2. Performance Requirement: ‘how good’ a system has to be.
A performance requirement is also known as an objective. All
performance requirements are ‘scalar’ (meaning numerically ‘vari-
able’) in nature and must be specified quantitatively. That is, there
should be a defined scale of measure (Scale) and a specification of
the future required numeric levels for success, failure-avoidance
and survival (Goal, Fail and Survival parameters, respectively) with
relevant conditions (the [time, place, event] qualifiers).

The minimum specification for a ‘performance requirement’ is
that there must be one target (a Goal, Stretch or Wish level) or
one future constraint (a Fail or Survival level). Of course, any
number of useful targets and constraints can be specified.

Finally, benchmark information is needed to complete any
requirement specification. Without such a ‘baseline,’ there is no
way to understand the relative (‘improved’) change required. So a
complete performance requirement specification will include at
least one benchmark (a Past, Record or Trend level).

A performance requirement specification can consist of:

. a set of targets (Goal, Stretch and Wish levels) and

. a set of constraints (Fail and Survival levels).

and is supported by:

. a set of benchmarks (Past, Record and Trend levels).

Note: As a performance requirement is scalar, all these are scalar
parameters.

54 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 29.6.2005
12:37PM

There are three kinds of performance requirement:

. quality requirement

. resource saving requirement

. workload capacity requirement.

2.1 Quality Requirement
A quality requirement expresses ‘how well ’ a system will perform.

EXAMPLE Adaptability:
Type: Quality Requirement.
Scale: Time in hours needed to re-configure the defined [Base Configuration] to any
other defined [Target Configuration] using defined [Methods] and defined [Recon-
figuration Staff].
Expert Reconfiguration: Defined As:
{Base Configuration¼Novice Setup,
Target Configuration¼Expert Setup,
Methods¼ Selection of Library Reconfiguration Process,
Reconfiguration Staff¼Qualified Expert}.
=========================== Benchmarks ==========================
Past [Expert Reconfiguration, Version 0.3, Asian Market]: < 1 hour.
======================== Performance Targets =======================
Authority [Goals]: Federal Drug Administration.
Goal [Expert Reconfiguration, Deadline¼Version 1.0]: < 0.5 hours.
Goal [Expert Reconfiguration, Deadline¼Version 2.0]: < 0.1 hours.
=========================== Constraints ===========================
Fail [All USA Products]: < 0.7 hours.
Fail [Expert Reconfiguration, Deadline¼Version 2.0]: < 0.5 hours.
Survival [Expert Reconfiguration, European Market]: < 1 Working Day.
This quality requirement is a measure of how well a system is designed to adapt to
reconfiguration needs in the future.

Note :
. This is a quality requirement even though it has a Scale that involves
measurement of a resource. The reason that this is not a resource saving is
that a specific level of resource saving is not being requested. The resource
measurement is simply a convenient way of capturing the ‘adaptability’ of the
system.

. This is also not a budget (a resource or cost requirement) as the level is not set
up primarily to monitor the expenditure of resource.

These are important distinctions, because as a consequence of them, you will be
forced to react in different ways to the problems arising in meeting these
requirements.

Introduction to Requirements 55

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 29.6.2005
12:37PM

2.2 Resource Saving Requirement
A resource saving requirement defines some required level(s) of
saving of a resource compared to the benchmark system(s). How
much resource do we have to save?

EXAMPLE Customer Installation Cost:
Ambition: Reduce the costs to our customers of installing our products on customer
sites.
Type: Resource Saving Requirement.
Scale: Average Total Installation Cost for each Installation of defined [Product] for
all <involved customer departments> within defined [Customer].
Total Installation Cost: Defined As:
{Cost of Education of <customer people>, Cost of Involvement during Planning of
<customer people>, Cost of Shipment of Product, Cost of Involvement during
Installation of <customer people>}.
PP: Past [Last Year, Customer XYZ, Product ABC]: Average <worldwide> Total
Installation Cost for each Installation of Product ABC for Customer XYZ
expressed in $.
Fail [For each Installation, USA, Release 1]: PP.
Goal [For each Installation, USA, Release 1]: 80% of PP.

2.3 Workload Capacity Requirement
A workload capacity requirement defines one specific capacity
of a system for doing work. It specifies an aspect of ‘how much’
work a system or product will be expected to perform in
operation.

Capacity requirements cover such things as transaction speeds,
data storage, maximum transaction volumes and maximum con-
current users.

EXAMPLE Responsiveness:
Ambition: Fast immediate response to any type of user asking for information.
Type: Workload Capacity Requirement.
Scale: Time in seconds from when a defined [User] knows what they want to ask
until the correct necessary information is available to them to carry out a defined
[Task].
Past [User¼ Free Set, Task¼ Inquiry]: Over one minute. Note: Considered unac-
ceptably slow.
Goal [User¼Responsible Administrator, Task¼Any Administration Task]: under 5
seconds? <-Guess TG.
Goal [User¼ Phone User, Task¼Call Setup]: Less than <2 seconds?> <- RB.
Note: Depends on type of call you want to set up.
Example from a client specification (edited).
(See Chapter 4 describing Performance and also Chapter 5 on Scales of Measure.)

56 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 29.6.2005
12:37PM

3. Resource Requirement: how much a system can cost
A resource requirement (budget) is a cost (expenditure) require-
ment. A budget is a plan for the use of a finite resource. A budget is
a statement of stakeholder-imposed:

. resource targets (Budget, Stretch and Wish levels)

. resource constraints (Fail and Survival levels).

How much of a limited resource do we plan to use?

Like performance requirements, all resource requirements are ‘sca-
lar’ or variable in nature and must be specified quantitatively.

We are interested in specifying resource requirements for two
closely related purposes. One is so that the design process can
‘design to cost.’ The other purpose is to help us influence the
performance to cost ratio. Ultimately, it is the benefit to cost ratio
of any product, organization or system, which defines its competi-
tiveness in the marketplace. Of course, we must control both
performance and its costs simultaneously. (See Chapter 6 for further
discussion on Resources.)

4. Design Constraint
A design constraint is an explicit and direct restriction regarding
the choice of a design idea (This includes any architecture or
strategy).

EXAMPLE Euro Safety Design [European Models]:
Type: Design Constraint.
Description:
Use designs {X, Y, Z},
Do not use designs {M, N, P}.
Authority: European Safety Law.
Responsible Manager: Corporate Safety Director.
Implementer: Product Line Architect.

5. Condition Constraint: what restrictions are imposed?
Condition constraints are restrictions on the system lifecycle – that
is, on the system design, operation or disposal – other than those
constraints expressed as attribute constraints (that is, other than
those expressed as function constraints, performance constraints,
resource constraints and design constraints). A condition con-
straint may be expressed as a qualifying [time, place, event] con-
dition or by using a Constraint parameter.

All condition constraints are binary (non-scalar). A condition
is either fulfilled or it is not. A condition is either true or
false.

Introduction to Requirements 57

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 29.6.2005
12:37PM

There is a potentially very long list of classifications for the con-
dition constraints. For example: Legal Constraint, Political Con-
straint and Cultural Constraint. Classification is not essential, just
useful. They are what they say they are in the specification.

Condition constraints can impact the design choices of a system.
That is, an architect or a systems engineer is free to choose any
design that does not violate the constraint.

Design
Idea 1

Design
Idea 2

Function 1 Recording
Information

Portability

Financial
Cost

Legal
in the UK

Metal
Casing

Requirements

Potential
Design Solutions

Yes

20 g

Yes,
Possible

Yes

5 Dollars

Yes

1 Kg

Yes,
Possible

Yes

2.5 K Dollars

Binary-Function Target

Binary-Design Constraint

Binary-Condition Constraint

Scalar-Performance Target

Scalar-Resource Target

Design
Constraint 1

‘Standard’
Pen

Laptop

[Legal Constraint 1]

Performance 1

Resource 1

Note:

1. The above table includes the binary requirements, which are not normally shown. (Usually, all the design
ideas are informally screened against the binary requirements before drawing up an IE table. An IE table
typically only shows the scalar requirements.)

2. The table is without the scalar baseline information that states the quantitative requirements and bench-
marks, which permit percentage comparisons and improved design idea evaluation.
See Chapter 9, Impact Estimation, for further explanation of IE tables.

Figure 2.3
This is a modified form of an Impact Estimation (IE) table showing an arbitrary set of
requirements and two potential design ideas.

58 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 29.6.2005
12:37PM

Table 2.1 Planguage Architecture. See the Glossary for further information; this table only
contains the main concepts.

Planguage
Architecture
Parameter Class

Parameter Name,
Type or Content

Use Notes

Specification
Control

Tag
Version
Specification Owner
Status
Quality Level

Administration and
Authorization of
specifications.

Version can be used at
the level of the
individual specification
object, not just at
document level.
Documents are ‘reports’
of views from
specification databases
of specification objects.

Stakeholder
Role (Agent)

– Consumer/Customer/
Product User

– Client/Customer/
Product Business

– Customer Manager
– System Owner

Specifies role played
by individuals or
organizational groups.
Stakeholders can be
internal or external
to a specific system.

Provides information
about the nature of
responsibility and the
relationship to a
specification.

– System Designer
– Specification Author
– Project Manager
– System Tester
– System Maintenance
– Authority
– Sponsor
– Funder
– Champion
– Other

Scope Scope Properties:
– Global/Local
– Generic/Specific
– Internal/External
(Inside or outside a
specified scope)

Defines applicable
specification/system
space. See ‘Condition’

Answers the question of
‘How influential is a
specification/system?’
Defined using [time,
space, event]
conditions.

Condition When – Time
Where – Place
Where – Place by
Stakeholder Role or
Organizational Group
Where – System
Component

Defines scope (space
dimensions) and,
indirectly, priorities.
All these objects
can be complex or
elementary.

Declared using
Qualifiers [. . .] or a
Condition parameter.
A complex object can
be decomposed into a
set of elementary
objects.

If – Event Defines a
system attribute, a system
requirement or a
potential system design.
Requirement
Design Idea

System
Attribute
(Attribute)

Function
Performance:
– Quality
– Resource Saving

‘Function’ includes
‘Mission’ at the
highest function
level.

Often simply referred
to as ‘Attributes’

– Workload Capacity
Resource/Cost
Design/Architecture

Continued

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 29.6.2005
12:37PM

Table 2.1 Continued

Planguage
Architecture
Parameter Class

Parameter Name,
Type or Content

Use Notes

Requirement 0. Vision
1. Function Requirement
2. Performance

Requirement
(or Objective)

To specify and agree
stakeholder needs

The primary
competitive ideas are
the performance
requirements.

– Quality Requirement
– Resource Saving
Requirement

– Workload Capacity
Requirement

3. Resource Requirement
4. Design Constraint
5. Condition Constraint

Attribute Class Benchmark/Baseline
Target
Constraint

Declares/clarifies
intended use of the
specification.

Benchmark/
Baseline

Past
Record
Trend

Systems Analysis.
Compare to
requirements: targets
and constraints.

Analysis data is
integrated with other

Target Goal (for Performance)
Budget (for Resource)
Stretch
Wish

Defines a numeric
value, which is valued
by stakeholders

Must be considered
together with the
[qualifier] information
to be fully interpreted.

Constraint For a Scalar Constraint:
– Fail
– Survival
For a Binary Constraint:
– Constraint
(Usually with an adjective,
such as ‘Function,’ ‘Design’
or ‘Legal’)

Defines a limit for a
numeric value or
certain specific criteria,
which has to be
respected to avoid
failure or worse.

Stakeholders impose
constraints.
Given the same set of
qualifiers, constraints
are of higher priority
than targets.

Standards Policy
Rule
Process
– Entry Condition
– Procedure
– Exit Condition
Interface
Template
Form
Other

Defines Work Process
Standards.

Specification rules
define the concept of
‘defects’ in a
specification. This
enables quality control,
process control and
process improvement.
Either specification
standards or system
standards.
For requirements and
much else.

Specification Requirement Specification
Design Specification
Architecture Specification
IE table
Evo Step Specification
Evo Plan
Systems Architecture
Standards Specification

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 29.6.2005
12:37PM

2.4 Rules: Requirement Specification

Tag: Rules.RS.

Version: October 7, 2004.

Owner: TG.

Status: Draft.

Base: The rules for generic specification, Rules.GS apply. For the
different types of requirement use also the relevant rules (that is,
Rules.FR, Rules.SR and Rules.SD).

R1: Stakeholders: There must be a list of the defined stakeholders and
it must span the entire product lifecycle and system space.

For any specific specification, the specific stakeholders can be stated or
defined explicitly. For example, Stakeholders: {A, B, C}.

R2: Scope: The scope or ‘system space’ of the requirements must be
defined. All specified qualifiers for requirements must be relevant to
the system space.

Note: Scope states the ‘overall system boundaries’. The scope for specific require-
ments is generally specified using [qualifiers]. See Section 2.7 for discussion of
qualifiers. Use a Scope parameter if you want an explicit definition.

R3: Qualifier Conditions: Using qualifiers, requirement specifications
must adequately cover the time period (When: long term and short
term) and the physical scope (Where) for the system and, must state any
known dependency on conditional states or events (If).

R4: Rationale: The rationale or justification for a requirement and for
specific aspects of it should be given. Use the Rationale parameter.

R5: Dependencies: Any conditions or circumstances, which a require-
ment depends on for relevance or authority, must be specified.
(Use the ‘Dependency’ parameter, or any other relevant means.)

R6: Internal Links: All specified requirements can be grouped
into relevant hierarchical levels of requirements. Linkage to related
requirements should be explicit and complete.

For example, use Planguage specifications such as:

. Hierarchical tags (for example, ‘System.Subsystem.Component’).

. ‘Consists Of’ or ‘Includes’ to link to lower hierarchical levels.

. ‘Is Part Of’ to link to higher hierarchical levels.

. ‘Supports’ and ‘Is Supported By’ to explicitly specify any intended direct links.

. ‘Impacts’ and ‘Is Impacted By’ to explicitly specify impacts including any
side effects (Impact Estimation table linkage).

Introduction to Requirements 61

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 29.6.2005
12:37PM

R7: External Links: Requirements which are related to any level
of product line requirements, corporate standards or policies, or
anything outside of the specific system documentation, must always
explicitly indicate that relationship by a suitable specification (By use of
parameters, such as Supports and/or Impacts). The intended readership
should not have to know or guess such relationships (for example, shared
interfaces, shared objectives and use of generic templates).

R8: Testable: Each requirement must be specified so that it is
possible to define an unambiguous test, to prove that it is actually
implemented.

A specific test may be specified or outlined immediately in the Meter or
Test statement. However, any specific tests will usually be designed in
detail later. The key idea is that all requirements must be clear enough to
be testable by some means.

R9: Design Separation: Only design ideas that are intentionally
‘constraints’ (Type: Design Constraint) are specified in the requirements.
Any other design ideas are specified separately (Type: Design Idea). All
the design ideas specified as requirements should be explicitly identified as
‘design constraints’ (that is, ‘design ideas’ which are ‘constraints’).

2.5 Process Description: Requirement
Specification

Requirement specification is carried out throughout a project’s life-
cycle. It occurs when specifying the initial overall top-level require-
ments and, subsequently, during each evolutionary result cycle.
(Within each evolutionary result cycle, the top-level requirements
are reviewed, and updated if necessary, and the subset of requirements
relevant to the specific step is specified in detail.)

A generalized requirement specification process is given in this section.
Specifically, it does not include any detailed review or updating
considerations.

Process: Requirement Specification

Tag: Process.RS.

Version: October 7, 2004.

Owner: TG.

Status: Draft.

62 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 29.6.2005
12:37PM

Entry Conditions

E1: The Generic Entry Conditions apply. The Specification Quality
Control (SQC) entry condition applies to any source information,
such as contracts and marketing plans.

E2: Key stakeholders should be available for questions and reviews to
resolve any uncertainty about sources and exact specification.

Procedure

P1: Define the system scope and the overall scope of the requirements.

P2: Identify relevant (critical and profitable) stakeholders.

P3: Determine the requirements of each type of stakeholder. Ensure
all specification statements are source-referenced.

P4: Categorize requirements by type (the major requirement types are
function requirement, performance requirement, resource require-
ment, design constraint and condition constraint).

P5: Specify Function Requirements (Process.FR. See Chapter 3).

P6: Specify Performance Requirements (Process.PR. See Chapter 4) includ-
ing identifying or creating a Scale ofMeasure (Process.SD. See Chapter 5).

P7: Specify Resource Requirements (Process RR. See Chapter 6).

P8: Identify and question any design constraints and condition con-
straints. (Are they real or was something else intended?) Ensure the
necessary design and condition constraints are specified.

P9: Specify all known significant relationships of the requirements to
any other relevant requirement specifications (external or internal to
the system). You need to identify where there may be overlap or conflict or
double accounting over benefits. There may even be synergy or a chance to
‘subcontract’ parts of the system development.

Use Planguage terms such as {Source, Dependency, Assumptions, Author-
ity, Impacts, Risks, Is Impacted By}.

P10: Get stakeholders to approve the written requirement specifica-
tions that specifically affect them.

P11: Carry out Specification Quality Control (SQC) on the require-
ment specification.5 Obtain management review approval.

5 For the majority of the procedures in this book, the exit and entry conditions serve to
remind you about the need for quality control: explicit reference to quality control
within the main procedure is usually omitted.

Introduction to Requirements 63

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 29.6.2005
12:37PM

Use sampling to obtain information about the likely number of remaining
major defects/page. An appropriate default, general exit condition is a max-
imum of one remaining major defect/page (300 non-commentary words).

Note: This is an appropriate point in this procedure to carry out quality
control. However, don’t let this prevent you from carrying out quality
control at other times. For example, it is far better you find out that there
is a problem after writing three pages than after 30 pages.

Exit Conditions

X1: The Generic Exit Conditions apply. The requirement specifica-
tion must have exited SQC.

X2: There is management review approval of the requirement speci-
fication.

Note: This exit does not mean that the requirements can or should be
‘frozen’ and final. They are merely ready for continuous refinement,
detailing, correction and supplements, which will result primarily
from feedback from early and frequent evolutionary delivery steps.

2.6 Principles: Requirement Specification

1. The Principle of ‘Results Beat All’
The top strategy is ‘getting the stakeholder results’.

Meeting requirements is more fundamental than any other process or
principle.

2. The Principle of ‘Goodies Control beats Bean Counting’
Focus on getting the Goodies. Their costs will be forgiven.

The main point of any project, or change effort, is to improve stake-
holder benefits. The benefits must be at least as well-controlled as the
resources needed to get them. Otherwise the benefits will lose out, at the
hands of the always limited, clearly budgeted resources.

3. The Principle of ‘Reasonable Balance’
Reach for dreams, but don’t let one of them destroy all the others.

You cannot require an arbitrary set of requirements. There must be
balance between performance requirement levels, resources available
and available design technology.

4. The Principle of ‘Unknowable Complexity’
You must feed a lion to find out how hungry it is.

64 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 29.6.2005
12:37PM

You cannot have correct knowledge of all the interesting requirements’
levels for a large and complex system in advance. You cannot know which
requirements are needed, and which are realistic, until you have some
practical experience with a real system with real people using it.

5. The Principle of ‘Specification Entropy’
Even gourmet decays.

Any requirement or design specification, once made, will become
gradually less valid, as the world, for which they were intended, will
change over time.

6. The Principle of ‘Critical Values’
If you don’t find the critical requirements, they will find you!

You must identify all potentially requirements for all stakeholders or
you risk losing profitability, or even system failure.

7. The Principle of ‘How Good’ and ‘How Much’ before ‘How’
All performance requirements and resource requirements must be
stated before any design idea can be fully and properly evaluated.

8. The Principle of ‘Gap Priorities’
The least fulfilled requirement attributes become our current
priorities.

By calculating the ‘gap’ between current real levels of performance deliv-
ered and the required levels, we can assume that the biggest unfilled ‘gap’
in meeting our targets is our current greatest priority. For example, you
cannot know now if you will be hungrier, thirstier or more tired a week
from now. But wait a week and you will know which need has priority.

9. The Principle of ‘Stop the World, I Want to get Off’
There is no final set of real-world requirements; freezing the
specifications will make your real problems worse than any pro-
blems caused by updating them.

10. The Principle of ‘Eternal Projects’
Survival is a lifetime project.,

The process of delivery of results has no end, if you are in competition
for survival.6

2.7 Additional Ideas

Using Qualifiers to Specify Conditions

Planguage is able to capture a wide variety of situations. This cap-
ability allows us to target specific parts of a system; for example,

6 Based on the wisdom of W. Edwards Deming.

Introduction to Requirements 65

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 29.6.2005
12:37PM

aiming to deliver to our most critical stakeholders and customers
early, without waiting for the entire systems effort to complete. The
major tool we use to give this flexibility and power is the ‘qualifier’
statement.

Qualifier Definition

A qualifier specifies any useful set of conditions that must be fulfilled,
in order for the specification to become effective (valid as a require-
ment, a design or other specification). The qualifiers usually specify
when, where and under what special conditions a specification is valid.
There are three main classes of conditions [time, place, event], in
other words, [when, where, if]. They are specified as follows:

. time’ or ‘when’ states a time concept.

o This can be a date. The date can be past, present or future.
o It can also be any relative notion of time, such as [After Release 1].
o It can be any multiple notions of time. For example, [After April
1, Except Sunday].

. place’ or ‘where’ states a notion of ‘placement’.

o ‘Where’ stated as a ‘physical location’ has a wide range of interpreta-
tion; it can be any component part of a system and/or any physical
location where the system operates or has operated or will operate.

o For example: [Market¼European Union],
[Use Area¼At School],
[System Module¼ {Module A, Module B,
Module F}].

o The ‘where’ location can even be stated indirectly by reference
to any aspect of the system that implies certain areas. For
example, ‘where’ can be captured by naming the stakeholders
involved (by user roles, or by their relationship to specific
locations), or tasks.

o For example, [Stakeholder¼ {First Time User, Pupil}],
[Users¼Account Managers],
[Users¼Head Office Staff],
[Task¼Address Entry].

. ‘event’ or ‘if’ states any special circumstances that have to be in a ‘true’
state for the specification to apply (For example, [If Contra-
ct23¼ Signed]).

(Aside: This final category of ‘event’/‘if’ is really a somewhat
simplified concept. The main aspect to consider is capturing
any ‘special circumstances/conditions.’ If you think about it, all
conditions, including time and place are actually ‘if’ conditions.)

66 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 29.6.2005
12:37PM

Qualifiers are defined within a Scale definition or within an individual
Planguage statement on a ‘need to know’ basis.

Qualifiers defined within a Scale definition are known as ‘Scale
Qualifiers.’ When using a Scale, all the scale qualifiers have to each
be assigned a ‘Scale Variable.’ A scale variable can be assigned by
default value, by explicit declaration or by implied inheritance.

EXAMPLE Training Time:
Scale: Average time in minutes for defined [User: default¼ Student] to complete
defined [Task].
Goal [User¼ Year 1 Student, Task¼ Learn to Use Library Catalogue,
School¼G&L]: 10.
Referring to potential qualifiers in a Scale definition using Scale Variables. User and Task
are defined within the Scale and are Scale Qualifiers. ‘Student’ is a default Scale Variable
for User. School is added in the Goal (performance) statement as an additional qualifier.

Qualifiers are usually stated within square brackets. However, there is
also a Qualifier parameter.

EXAMPLE Goal [Case Home]: 99.5%, [Case Euro]: 99.6%.
Source: Product Planning.
Project Defaults: Qualifier [Years End, Consumer Goods, If Fierce Competition on
Price].
Case Home: Qualifier [Home Market, Project Defaults].
Case Euro: Qualifier [Euro Market, Project Defaults].
A qualifier statement can be defined independently, for example in order to reuse it, or to
have a short summary reference to it elsewhere.

There is no sequence requirement for the conditions. There can be
multiple instances of any one class of condition. For example:
[Country¼ {USA, UK, NO}].

The qualifier content should either be self-evident for purpose (For
example: [End of this Year, USA, If No War] or make use of add-
itional explicit qualifier parameters as follows: [Qualifier Name¼
Qualifier ‘Value’].

EXAMPLE Goal [Deadline¼End of Next Year, Country¼UK, State¼ If No War]: 55%.

Qualifiers can be present in any requirement, design idea, or Evo step
specification. Most Planguage parameters can use qualifiers: certainly
all benchmarks, targets and constraints would be expected to have
qualifiers present.

In fact, without adequate qualifiers, a specification is too general. For
example, for a requirement to really exist, time and place conditions
must be set.

Introduction to Requirements 67

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 29.6.2005
12:37PM

Qualifiers can apply ‘by default’ from other system specifications. This is
called ‘inheritance’. Inheritance occurs from more global specifications
and/or from higher hierarchical specification levels. In such situations,
there exist no ‘more local’ qualifiers that override the inherited qualifiers.

Qualifiers and System Space/Scope

Scope is the overall ‘space’ for a system. The scope for specific
requirements is generally specified using [qualifiers]. Alternatively,
you can use the Scope parameter if you want to state a set of scope
boundaries as a separate reusable statement.

Constraints may help establish the limits of the system scope (bound-
aries). Condition constraints can be used to specify any specific con-
ditions that are limits to the scope of a system.

The Difference between Qualifier Conditions and Condition
Constraints

Qualifier conditions are not usually constraints. Any specification (such
as requirement, design, implementation planning or test planning)
can contain qualifier conditions of any kind. Qualifier conditions
must all be ‘true’ for the related specification to be made effective.
The effective specification may or may not itself be a constraint
specification. (A constraint sets a limit because some kind of ‘pain’
will be experienced if the constraint is not met/conformed to).

EXAMPLE L [X, Y]: Type: Condition Constraint: The system must be legal in area E.
G [M, N]: Type: Function Requirement: Children’s Games.
L is a condition constraint, which is activated only when qualifier condition X and Y are
both true.
G is NOT a condition constraint. It is a function requirement that is a valid requirement
when both conditions M and N are true.

Qualifiers and Evo Steps

One of the many uses of qualifiers is in helping us to ‘divide up’ both
requirements and design ideas into ‘chunks’ for implementation pur-
poses. All qualifiers specified in requirements help identify potential
‘natural boundaries’ within the system that might enable sub-setting
of the system to support selection and delivery of Evo steps.

Deadlines provide a set of time sequences, and ‘place’ qualifiers give a
set of locations that can be exploited in planning the evolution of the
system. Even an event condition can give us the possibility of further
differentiation for selection of possible Evo steps.

68 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 29.6.2005
12:37PM

Additional Ideas Concerning Constraints

Constraints are not the main reason our project exists and they are
certainly not what we are investing in. However, constraints are
essential requirements as they provide the information about the
design limitations, which we must adhere to: the absolute limits for
performance and resource levels and, the absolute restrictions on what
we can and can’t do.

Constraints are set as a result of many factors: corporate policy,
national laws, competitive forces and limited project resources, to
name a few of the many areas that supply us with constraints. The
penalty for us if we do not identify, specify and respect these con-
straints is some degree of partial, to total, failure to deliver the
stakeholder requirements. Constraints are not ‘fun,’ but try to think
of them as presenting interesting engineering challenges.

Adherence to Constraints

When designing a system, the list of constraints needs to be treated as
a checklist against which every single potential design idea has to be
checked for possible violation. Remember also to check any sets of
design ideas and, the potential total design (if it is outlined) against
the constraints. It could be that collectively a set of design ideas
violates some constraint(s). For example, by exceeding a resource
constraint. Any potential design idea that violates any constraint
might be rejected for this reason. But, not for sure! It depends on
the relative priority of the requirements, which the design idea is
trying to satisfy, as well as the options for alternative design ideas.
In some cases, the constraint itself may have to ‘back down’. It
would be good practice to specify what has happened in the design
specification.

EXAMPLE Note: This design conflicts with the following constraints {CA, CB}, but we have
decided to make an exception, as no other better alternative has been found <- TG.
Authority: Chief Architect.

One point to bear in mind is that constraints always result from the
choices of stakeholders. What might be a ‘given’ constraint to you is
likely to be the free choice of another stakeholder. If you decide there
is an issue with a constraint or that a conflict exists, then the first thing
to consider is the authority that ‘set’ the constraint. You can then
determine how to treat the issue to achieve resolution.

Remember, constraints have cost implications as well: the addition,
alteration or removal of a constraint can have significant impact on
the implementation or operational system costs.

Introduction to Requirements 69

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 29.6.2005
12:37PM

EXAMPLE C1: European Community Suppliers of <system components>must be used, where
possible.
Type: Political Constraint.

EXAMPLE C2: The system must be legal in the country of operation.
Type: Legal Constraint.

EXAMPLE C3: It cannot cost more than ‘Y’ to develop <the system>.
Type: Resource Constraint [Resource¼ Financial, Lifecycle Stage¼Development].

EXAMPLE C4: It cannot cost more than ‘X’ to produce, distribute or support <the system>.
Type: Resource Constraint [Resource¼ Financial, Lifecycle Stage¼ Post Development].

Constraint Viewpoints

Constraints can be classified from several viewpoints (see Figure 2.4).
If you consider the system lifecycle viewpoint, two specific categories

Constraint Specification
Structure

System
Lifecycle Other

Stakeholder
Authority

Constraint Viewpoints

Scalar Binary

P
er

fo
rm

an
ce

 C
on

st
ra

in
t

R
es

ou
rc

e
C

on
st

ra
in

t

F
un

ct
io

n
C

on
st

ra
in

t

E
ng

in
ee

rin
g

P
ro

ce
ss

O
pe

ra
tio

na
l S

ys
te

m

O
th

er

C
on

di
tio

n
C

on
st

ra
in

t

O
th

er

C
ou

nt
ry

 L
eg

is
la

tio
n

C
ha

irm
an

 /C
E

O

Obey UK Environmental Emission Laws

Meet CO Emission Levels

Use Language X
for all programming

D
es

ig
n

C
on

st
ra

in
t

Figure 2.4
Constraint viewpoints: constraints are either scalar or binary. They can be categorized
from several viewpoints.

70 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 29.6.2005
12:37PM

of interest could be ‘System Operational Constraints’ and ‘Engineer-
ing Process Constraints.’ System operational constraints apply across
the entire operational system, while engineering process constraints
only restrict the engineering process itself (as opposed to the system
being engineered). A constraint such as ‘Meet carbon monoxide
emission levels’ is simultaneously a system operational constraint, a
performance constraint and a legal constraint.

2.8 Further Example/Case Study: A Proposal to the
Board for $60 Million

Here is the original plan (edited to conceal identities) presented to the
Board of Directors of an engineering organization, requesting $60
million for CAD/CAM equipment. It was written by the Engineering
Director for Quality and Productivity. The answer was ‘‘No.’’

A special effort is underway to improve the timeliness of Engineering
Drawings. An additional special effort is needed to significantly
improve drawing quality. This Board establishes an Engineering
Quality Work Group (EQWG) to lead Engineering to a breakthrough
level of quality for the future. To be competitive, our company must
greatly improve productivity. Engineering should make major con-
tributions to the improvement. The simplest is to reduce drawing
errors, which result in the AIR (After Initial Release) change traffic
that slows down the efficiency of the manufacturing and procure-
ment process. Bigger challenges are to help make CAD/CAM a
universal way of doing business within the company, effective use
of group classification technology, and teamwork with Manufactur-
ing and suppliers to develop and implement truly innovative design
concepts that lead to quality products at lower cost. The EQWG is
expected to develop ‘end state’ concepts and implementation
plans for changes of organization, operation, procedures, stand-
ards and design concepts to guide our future growth. The target
of the EQWG is breakthrough in performance, not just ‘work harder’.
The group will phase their conceptualizing and recommendations
to be effective in the long term and to influence the large number
of drawings now being produced by Group 1 and Group 2 design
teams.

My critical review of the above draft:

1. It does not have a clear ‘structure’, which would enable the reader
to understand it.

2. The objectives (for example, cost savings) are not clearly stated (no
numeric targets, when? scope?).

Introduction to Requirements 71

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 29.6.2005
12:37PM

3. Undefended and unjustified assumptions are made, prejudicing
the work of the group.

4. No reference to any of their own past, present or competitive
efforts in this area (no benchmarks).

The first thing I do when presented with a document such as this is to go
through and mark the ideas concerning performance requirements – the
objectives (bold and underlined) and the ideas concerning strategies or
solutions (italics and underlined). I also underline implied requirements.

(Hint: You can use underlining and the letters ‘O’ and ‘S’ on a paper copy
of a document.)

A special effort is underway to improve the timeliness of Engineering
Drawings. An additional special effort is needed to significantly
improve drawing quality. This Board establishes an Engineering Quality Work
Group (EQWG) to lead Engineering to a breakthrough level of quality for
the future. To be competitive, our company must greatly improve
productivity. Engineering should make major contributions to the
improvement. The simplest is to reduce drawing errors, which result
in the AIR (After Initial Release) change traffic that slows down the
efficiency of the manufacturing and procurement process. Bigger
challenges are to help make CAD/CAM a universal way of doing business
within the company, effective use of group classification technology,
and teamwork with Manufacturing and suppliers to develop and implement
truly innovative design concepts that lead to quality products at lower cost.
The EQWG is expected to develop ‘end state’ concepts and imple-
mentation plans for changes of organization, operation, procedures, standards and
design concepts to guide our future growth. The target of the EQWG is
breakthrough in performance not just ‘work harder’. The group will phase
their conceptualizing and recommendations to be effective in the
long term and to influence the large number of drawings now being
produced by Group 1 and Group 2 design teams.

A framework for the requirements can then be drawn up for
further work. Fuzzy brackets denote where more information is
required.

Scope:
Time:

<short term>
<long term>

Place [Organizational Group]:
Engineering Organization: Research and Development

Group 1 Design Team
Group 2 Design Team

Manufacturing
Procurement

Suppliers

72 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 29.6.2005
12:37PM

Performance Requirements:
Ambition: <competitive>þ<breakthrough level of quality>.
Reduce Product Cost.
Improve Productivity [Engineering].

Improve timeliness of <engineering drawings>.
Improve <drawing quality>.
Reduce <drawing errors>.
Others.

Reduce <Engineering Process> timescales (‘time to market’).
Improve <Efficiency> [Manufacturing, Procurement].
Achieve <Growth>.
Others

This is just the start – there are no benchmarks or numeric values
specified! Note also, that these are just initial lists; they are not in
Planguage format. (See later chapters for discussion on how to specify
such requirements.)

Some of the suggested potential design ideas are listed below. These
design ideas are not requirements unless they are specific design
constraints. Further work is required to establish how they should
be viewed.

Potential Design Ideas:

. Have a team responsible for improvement – EQWG

. <Innovative> change of organizational, operation, procedures,
standards and design concepts

. Make CAD/CAM a universal way of doing business

. <Effective> use of group classification technology

. <Effective> teamwork with Manufacturing

. <Effective> teamwork with Suppliers

Below is a clearer way to express the same ideas (but not necessarily the
best way), which begins to address the issues of numeric values and
evolutionary progress towards solutions. Some values are deliberately
‘set up’ with the aim that any wildly incorrect values will be
challenged.

Ambition: As our primary initial task, we have targeted a significant
reduction in the drawing errors, which are not due to customer
change requests. When we have shown we can achieve that,
other tasks await us.
The long-range objective is a reduction of drawing errors, which
require After Initial Release changes. The aim is for errors to be
dropped by at least 20% each year, from the levels current at the
beginning of the year. Results are expected from the end of

Introduction to Requirements 73

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 29.6.2005
12:37PM

November. Results should be designed to come in at the rate of
10% of annual target each month (that is, a 2% reduction of draw-
ing errors each month). When results are not achieved, the EQWG
will analyze the attempt and advise the Programs on possible
improvements to achieve results.
Plan: The first month is November. An attempt to get a 2% reduction
by the end of that month is the implied target.
Strategies: The Group 1 and the Group 2 design teams will start in
parallel and will have a friendly competition for reduction of the
drawing errors.
The design teams are expected to find their own detailed solutions
and strategies.
Funding: Up to $500,000 is available immediately for funding any
activity necessary for achievement of this target {experiments, train-
ing, consultants, research trips}. In the long run, the project should
be self-funding through savings.
Responsibility: The Program Directors (and their staff) are responsible
for achieving targets. The EQWG is responsible for supporting theactiv-
ity, by dispensing the funding, reviewing progress and assisting the
responsible programmanagers with any resources they may need.
Method: The method for planning outlined in the ‘Proposed stan-
dard for EQWG Organization’ will be the basis for planning. It will be
modified as required by the EQWG.

Note: As the above was intended for presentation to management, it was
formatted as ordinary text (without identifying user-defined terms).

See more about this case study in Section 3.2.

Bill of Rights

. You have a right to know precisely what is expected of you.

. You have a right to clarify things with colleagues, anywhere in the
organization.

. You have a right to initiate clearer definitions of objectives and strate-
gies.

. You have a right to get objectives presented in measurable, quantified
formats.

. You have a right to change your objectives and strategies, for better
performance.

. You have a right to try out new ideas for improving communication.

. You have a right to fail when trying, but must kill your failures quickly.

. You have a right to challenge constructively higher-level objectives and
strategies.

. You have a right to be judged objectively on your performance against
measurable objectives.

. You have a right to offer constructive help to colleagues to improve
communication.

Original version in (Gilb 1988 Page 23)

Figure 2.5
The author suggested these ‘rights’ for a multinational client. Of course it is a sneaky
way to tell people what their ‘duties’ are!

74 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 29.6.2005
12:37PM

2.9 Diagrams/Icons: Requirement Specification

PFR

D

S

C C

F is a function attribute. R is resource attribute, shown as an input attribute to F.
P is a performance attribute, shown as an output attribute to F.
D is a design attribute.
C represents a condition attribute (the two ‘brackets’ combined).
The set {R, F, P, D, C} make up a system, S.

Figure 2.6
A simple system model showing the main attributes for a system, S.

F1

F2

FRS PR

RS.A

RS.B

PF

PR.C

PR.B

PR.A

PR.1

PR.2

RS.1

RS.2

RR

DS1

DS1.2DS1.1

D DS2

S1

C1

C2
C1

C2

Notes:
F1 and F2 are sub-functions of function attribute, F.
RS is a complex cost. RS.1 and RS.2 are the corresponding resource attributes of their respective sub-functions
F1 and F2. They can be referred to like this, F1.RS.1 or F.F2.RS.2.
RR is another resource attribute of F.
PR is a performance attribute of F.
F1.PR.1 and F2.PR.2 are the corresponding performance attributes at the sub-function level. PR.A, PR.B and
PR.C are performance attributes (each has a separate scale definition). As a set, PR.A, PR.B and PR.C define
the meaning of PR, a complex performance requirement.
PF is another performance attribute of F.
D is a design attribute of the system, S1. D has sub-components of DS1 and DS2.
C1 and C2 are condition attributes.

Figure 2.7
A more complex system model for a system, S1.

Introduction to Requirements 75

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 29.6.2005
12:37PM

Function G

Function E

Design Idea P

Design Idea D

Design Idea R

Design W

Design Q Design S

Resource A Performance X

Resource C
Resource B

Function F

Performance Y

Performance Z

Performance T

C
onsists O

f*

Im
pa

ct
s

Is Impacted By

Is
 P

ar
t O

f*

Supports

Supports

Im
pa

ct
s

Im
pa

ct
s

Im
pa

ct
s

Is Im
pacted B

y

Is Im
pacted B

y

Includes*

Supports

Note: * Hierarchical relationships are usually represented by lines rather than arrows.
 Arrows are used here to explicitly show the direction of the relationship.

Notes:
Simplified icons are shown for resource and performance (in ‘true’ icons, the block arrows should each be linked
to an oval, representing function).
The ‘linking’ terms include: Consists Of, Includes, Is Part Of, Impacts, Is Impacted By, Supports and Is
Supported By. Note: Not all relationships are shown.

Hierarchical Links:
Performance X Consists Of {Performance Z,
Performance T Consists Of Performance Y}.
Design W Consists Of {Design Q, Design S}.

Resource A Includes Resource B.
Function E Includes Function G.
Design W Includes Design Q.
Design Idea D Includes Design Idea R.
Performance X Includes Performance T.

Resource B Is Part Of Resource A.
Performance Z Is Part Of Performance X.
Function F Is Part Of Function E.
Design Idea R Is Part Of Design Idea D.

IE Table Links:
Design Idea D Impacts Design Q.
Design Idea D Impacts Resource C.
Design S Impacts Performance X.
Design Idea D Impacts Performance Z.

Resource A Is Impacted By Design Q.
Performance Z Is Impacted By Design Idea D.
Resource C Is Impacted By Design Idea D.

Specific Attribute Links:
Resource A Supports Function E.
Function E Supports Performance X.
Resource A Supports performance X.

Figure 2.8
Diagram showing how to express the relationships amongst attributes, between attribute
and design idea, and amongst design ideas.

76 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 29.6.2005
12:37PM

Requirement Specification Template (A Summary Template)

Tag: <Tag name for the system>.
Type: System.
=========================== Basic Information ==========================
Version: <Date or other version number>.
Status: <{Draft, SQC Exited, Approved, Rejected}>.
Quality Level: <Maximum remaining major defects/page, sample size, date>.
Owner: <Role/e-mail/name of the person responsible for changes and updates>.
Stakeholders: <Name any stakeholders (other than the Owner) with an interest in the
system>.
Gist: <A brief description of the system>.
Description: <A full description of the system>.
Vision: <The overall aims and direction for the system>.
============================= Relationships ============================
Consists Of: Sub-System: <Tags for the immediate hierarchical sub-systems, if any, com-
prising this system>.
Linked To: <Other systems or programs that this system interfaces with>.
========================= Function Requirements ========================
Mission: <Mission statement or tag of the mission statement>.
Function Requirement:
<{Function Target, Function Constraint}>: <State tags of the function requirements>.
Note: 1. See Function Specification Template. 2. By default, ‘Function Requirement’ means
‘Function Target’.
======================= Performance Requirements ======================
Performance Requirement:
<{Quality, Resource Saving, Workload Capacity}>: <State tags of the performance
requirements>.
Note: See Scalar Requirement Template.
========================= Resource Requirements ========================
Resource Requirement:
<{Financial Resource, Time Resource, Headcount Resource, others}>: <State tags of
the resource requirements>.
Note: See Scalar Requirement Template.
=========================== Design Constraints ==========================
Design Constraint: <State tags of any relevant design constraints>.
Note: See Design Specification Template.
========================= Condition Constraints =========================
Condition Constraint: <State tags of any relevant condition constraints or specify a list of
condition constraints>.
====================== Priority and Risk Management =====================
Rationale: <What are the reasons supporting these requirements? >.
Value: <State the overall stakeholder value associated with these requirements>.
Assumptions: <Any assumptions that have been made>.
Dependencies: <Using text or tags, name any major system dependencies>.
Risks:<List or refer to tags of any major risks that could cause delay or negative impacts to the
achieving the requirements>.
Priority: <Are there any known overall priority requirements? >.
Issues: <Unresolved concerns or problems in the specification or the system>.
================== Evolutionary Project Management Plan ==================
Evo Plan: <State the tag of the Evo Plan>.
========================= Potential Design Ideas ========================
Design Ideas: <State tags of any suggested design ideas for this system, which are not in the
Evo Plan>.

Figure 2.9
Requirement specification template. This is a summary template giving an overview of the
requirements.

Introduction to Requirements 77

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 29.6.2005
12:37PM

2.10 Summary: Requirement Specification

This chapter has given an overview of requirement specification and
introduced the different requirement types: function requirement,
performance requirement, resource requirement, design constraint
and condition constraint. Subsequent chapters (Chapters 3 to 6) will
describe these requirement types in greater detail.

Planguage helps with requirement specification:

. by helping you to focus on the most critical requirements

. by demanding numeric definition for variable (scalar) requirements

. by making sure you obtain and specify benchmark levels for per-
formance and resource attributes

. by encouraging specification of constraints.

As a result, the overall communication of the requirements between
business management and systems engineering becomes much more
precise:

. Technical staff of all levels have a clearer practical understanding of
what they must deliver.

. Management can better understand and control project progress.

There are also two further, significant benefits from Planguage
requirement specification:

. It actively assists the system design process. The numeric values of
the benchmark and target requirements are direct inputs into
Impact Estimation, which is used to quantitatively assess design
ideas (see Chapters 7 and 9).

. It caters for evolutionary system engineering methods as it supports
dynamic requirements and, it enables rapid, numeric tracking of
progress. There is the ability to clearly specify how critical require-
ment levels should change over time and any changes to these
numeric values (by project progress or change in requirement) are
clearly visible to all. There is also the ability by specifying [time,
place, event] conditions to readily communicate sub-division of a
system.

Clear, specified requirements are at the heart of systems engineer-
ing. Planguage is a flexible tool to help you communicate require-
ments better.

78 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 29.6.2005
12:37PM

“Would you tell
me please,
which way I
ought to go
from here?”
 “That depends
 a good deal
 on where you
 want to get to,”
 said the cat.
 “I don’t much
 care where --,”
 said Alice.
 “Then it
 doesn’t matter
 which way
 you go,” said
 the cat.

 Lewis Carroll

Figure 2.10
Alice and the Cheshire Cat. Illustration by John Tenniel, wood-engraving by Thomas
Dalziel. From Chapter 6, Alice in Wonderland by Lewis Carroll.

Introduction to Requirements 79

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH002.3D – 35 – [35–80/46] 29.6.2005
12:37PM

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

Chapter

3

FUNCTIONS
What systems ‘do’

GLOSSARY CONCEPTS

Function
Function Requirement
Mission

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

3.1 Introduction: Function and Function
Requirement Specification

Function specifications define ‘the business we are in ’. Functions are
‘what ’ a system does. Functions must be distinguished from how well
a system performs (the stakeholder performance attributes, such as
quality) and from how much a system costs (the resources expended).

EXAMPLE Manual Dialing:
Type: Function Requirement.
Description: The user capability, by any available means {finger on key, voice, name
list}, to select or provide and, transmit a {telephone or internet} {number or address}
and any other required symbols, to reach and access any available services. It
specifically includes any keying or other activity needed in connection with commu-
nication, such as accessing lists. It specifically excludes any non-communication
activity such as game playing.

Separation of Functions from Design Ideas

Functions must also be distinguished from design ideas (how a system
is going to achieve its requirements).1 It is all too easy to mix them up
but, if you do, you cheat yourself of the results you might get from a
better design idea. The test is simple. Ask ‘‘Why this {function or
design idea}?’’ If the answer is ‘‘because that is what our system ‘must
have’ to be ‘our’ system at all,’’ you are probably talking about a
function: something so fundamental that it is not for the systems
engineer to modify or choose.

If the answer to ‘‘Why?’’ is ‘‘in order to get a performance improve-
ment’’ or ‘‘for cost reduction,’’ then that specification is a design idea,
not a function. For example, for a bank, ‘lending and dispensing
money’ are clearly basic functions. The automated teller machines
(ATMs) in the wall are clearly a ‘design idea’ from the bank’s point of
view. This is because the ATM is one way to make the functions (of
lending and dispensing money) have certain performance attributes
(such as ‘‘to make it easier for our customers to withdraw money at the
time they want to’’).

Making this ‘function or design?’ distinction perhaps even more
difficult, is the issue that the ‘objects’ we analyze are not purely
‘function’ or ‘design.’ Returning to the ATM example, at the ‘bank’

1 Chapter 2 discussed how requirements must be separated from design in general.
Now, here we are specifically discussing how function requirements must be clearly
separated from design and explaining some of the associated issues.

Functions 83

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

level, the ATM functionality is a ‘design idea’. However, at the level of
the ‘ATM project’ the ATM functions become undisputed ‘function-
ality’. The classification is dependent on your viewpoint.

In Planguage, we classify as ‘function’ or ‘design’ in order to convey
the information about what is fundamental in a given situation
(function) and what is a ‘currently selected option’ (a design idea).
In this sense, we could say that the classification ‘function’ acts as a
constraint2 on the system designer. This distinction is one made in our
minds, because we want the designer to have, or not to have, freedom
to improve things. The ‘system itself’ is unaware of the distinction. An
outside observer might not be able to see the distinction by merely
looking at the system. For example, is air-conditioning in a car a
function or a design? Is it an option or a fundamental concept? It all
depends on the attitude of the people involved.

To give another example: at one stage the concept of putting a ‘motor’
into a horse-drawn carriage (creating the auto-mobile, the horse-less
carriage) was clearly a ‘design’ intended to give certain performance
and cost attributes, which ‘horses’ did not have. At this present stage
of culture, the ‘mechanical engine’ in a car is taken almost completely
for granted and has become a function, ‘providing mechanical engine
power.’ This function clearly requires design ideas to implement it,
which contribute to the overall characteristics of the car (some engine
fuel design options are gasoline, diesel, steam, electricity and nuclear
power).

With ‘functions’ you are not empowered to change them. You can’t
decide that a car will have no wheels; ‘wheel functionality’ is too much
of a ‘given’ function. However, you can decide about many features of
the design of the wheels, to ensure they have interesting attributes.
You can also decide about the design of the ‘motor’ function, to give
both it, and consequently the car, better attributes. But you cannot
suddenly change the ‘motor’ function and opt for the horse again!

One advantage of making the design/function distinction clear is that
if new design ideas come along (which could replace current design),
you are psychologically ready to evaluate them, and accept the ones
that on balance are better than the current design.3 Another advantage
is that you are more likely actively to look for alternative designs. In
overall effect, the design/function distinction can free us up to design
systems more competitively.

2 Of course, it is only a ‘true’ requirement constraint if declared as a ‘function
constraint.’ See later discussion in Chapter 7 on Priority Determination.
3 How we estimate the relative contribution to requirement satisfaction of design ideas
(their ‘impact’) relies on the methods in the following chapters: the quantification of
attributes, and the estimation of the impact on these attributes, of the design ideas.

84 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

Keep uppermost in your mind that this classification process is simply
about giving information to systems engineers about what they should
take as ‘givens’, and about what they should ‘engineer.’ Any engineer,
who has a true (engineering or systems architecture) design process,
should care about this distinction: the information about what they
should design is of crucial importance to them.

Classification as either ‘function’ or ‘design’ depends on:

. the circumstances:

A ‘selected design’ or ‘design constraint’ becomes viewed as provid-
ing ‘required functionality’ as seen from later and lower levels of the
decision-making hierarchy.

. the stage of development:

One stakeholder’s design idea becomes another development pro-
cess person’s ‘required function’.

. the current culture:

Yesterday’s design may become today’s ‘given’ function.

. the intent of the specification:

If it is specified in order to deliver performance or savings require-
ments, it is a design.
If it is there because it is ‘fundamental’, ‘because that is how we do
things,’ then it is a function.

. the degree of freedom of a given type of planner/designer/architect
to actually change the specification:

If they are free to change it, then it is more likely design.

The above are some, hopefully useful, ideas to help you classify a
specification as a function or a design. But, do not get over fixated by
this process. It is finally one of degree and subjective judgment. A
specification ‘is what it is specified to be’ – no matter how we classify
it. The classification is intended to give us better ideas of our respon-
sibilities for the specification and our options (Must implement as it
is? Or, OK to improve it?).

Function Requirements

Any required function, which is essential and fundamental to the
future system, is called a ‘function requirement’. It must be specified
as ‘pure’ function and it must be specified with information about the
conditions [time, place, event] under which the functionality exists
(otherwise there is no actual requirement!).

Functions 85

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

EXAMPLE Type: Function Requirement: {F1, F2, F3}.
F1 [USA]: 911 Emergency Dialling Capability.
F2 [Finland]: Character Capability {Finnish, Swedish, English}.
F3 [End Next Year, California]: Exhaust Emission Testing.

In addition, any instance of a real-world function always comes
attached with a set of resource and performance attributes. So when
we specify a function requirement, we have to consider what has to be
done about its associated attributes. All function requirements must
respect the full set of performance and resource requirements, which
apply to ‘their level’ of the system.

EXAMPLE Availability.Q1 [F1, F2, F3]:
Type: Quality Requirement.
Scale: % Uptime. Fail: 99.0%. Goal: 99.5%.

EXAMPLE Availability.Q1:
Type: Quality Requirement.
Scale: % Uptime.
Fail [F1]: 90%, [F2]: 92.5%, [F3]: 95%.
Goal [F1, F2, F3]: 99.5%.
An example of how to specify the specific attachment of performance levels to functions.
Availability Q1 is ‘attached’ to the three named functions, F1, F2 and F3 using
qualifiers. In the first instance all goals are attached to the three functions. In the second
instance only the one Goal is attached to the three functions and the Fail levels are
attached individually and differently.

Any global scope requirements automatically apply to a function or
sub-function, unless they are specifically contradicted by more specific
local requirements.

Of course, it may be the case that certain key functions may require
even higher performance levels (say for reliability and efficiency) than
other functions. In these specific cases, the definition of the function
requirement must explicitly be linked to appropriate specific
requirements.

EXAMPLE Reliability: Scale: MTBF. Goal [Function X]: 99.98%.

Service Performance: Scale: Time in seconds to <reply to inquiries>.
Goal [Function: FX]: 1 second/reply.
Explicitly linking an attribute to a function.

By the time a function requirement (or part of a function require-
ment) is planned for delivery in an Evo step, its performance and
resource requirements, and the conditions surrounding its delivery

86 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

should be precisely pinned down using specification parameters like
Risks, Is Impacted By, Dependency and Authority.

All function requirements will, ultimately, have a set of performance
and resource attributes associated with them.
Systems engineering is about getting control over these attributes.

3.2 Practical Example: Function Analysis

Consider the (real) proposal to the Board of Directors asking for
$60 million, which we first considered in Section 2.8:

Proposal to the Board of Directors

A special effort is underway to improve the timeliness of Engineer-
ing Drawings. An additional special effort is needed to signifi-
cantly improve drawing quality. This Board establishes an
Engineering Quality Work Group (EQWG) to lead Engineering to
a breakthrough level of quality for the future. To be competitive,
our company must greatly improve productivity. Engineering
should make major contributions to the improvement. The simplest
is to reduce drawing errors, which result in the AIR (After Initial
Release) change traffic that slows down the efficiency of the
manufacturing and procurement process. Bigger challenges are
to help make CAD/CAM a universal way of doing business within
the company, effective use of group classification technology,
and teamwork with Manufacturing and suppliers to develop and
implement truly innovative design concepts that lead to quality
products at lower cost.

The EQWG is expected to develop ‘end state’ concepts and imple-
mentation plans for changes of organization, operation, proce-
dures, standards and design concepts to guide our future growth.
The target of the EQWG is breakthrough in performance not just
‘work harder.’ The group will phase their conceptualizing and
recommendations to be effective in the long term and to influence
the large number of drawings now being produced by Group 1 and
Group 2 design teams.

Now let’s further analyze it. Who are the stakeholders? What are the
functions?

Stakeholders:

Management (Engineering Manager, Board of Directors and others)

Functions 87

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

Engineering Design Teams

EQWG
Group 1 Design Team
Group 2 Design Team

Procurement
Manufacturing
Suppliers
Customers

Functions:

Carry out Research and Development
Create Designs

Produce Engineering Drawings

Procure Materials
Manufacture Goods
Establish Work Environment
Maintain Work Standards and Practices
Maintain Organizational Structures

Note: These lists of stakeholders and functions show an alternative simpler
formatting for Planguage sets (Parenthesis brackets ‘{ }’ and commas are
dispensed with).

As the functions become ‘lower level,’ they begin to constrain the
design options! Great care must be taken that function specification is
not taken down too far to the wrong level of decomposition. For
example, ‘Produce Engineering Drawings’ is possibly beginning to
dictate certain aspects of the solution.

Notice that by separating the different concepts of functions, design
ideas, performance, resources and stakeholders, you get much greater
clarity about what is really being said. The basis for further system
improvement is also laid. For example, the performance attributes
should next be taken a stage further, and be given better definitions
that include numeric values stating the requirement levels. You are
then able to start evaluating the ‘impact of the proposed design ideas’
on ‘all the requirements.’

Now you try! Take some recent and important system requirements
from your own work, and analyze it into these components: {Func-
tion Requirements, Performance Requirements {Qualities, Workload
Capacities, Resource Savings}, Resource Requirements, Design
Constraints, Condition Constraints, Design Ideas, Assumptions and
Comments}.

88 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

3.3 Language Core: Function and Function
Requirement Specification

Here are some formats for referencing and specifying functions,
including structuring them. If this seems more than you need for
the moment, then all you really have to know is the basic format,
‘Function Tag: <function description>.’

Note: Function specification is not always for function require-
ments. You need to specify functions for other purposes as well,
such as describing existing systems and clarifying functional
concepts.

Maintain
Rules

Update
Rule

Update
Policy

Maintain
Process Owner

Maintain
Policy

Implement
Process

Improvement

Maintain
Process Description

Update
Exit Conditions

Update
Procedure

Update
Entry Conditions

Update
Process Details

Maintain
Process

Maintain
Standards

Others

Figure 3.1
Diagram showing the relationships amongst the functions used in the examples in this
section.

Functions 89

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

Referencing Functions

Functions are identified with a tag. Some variations on the tag
structure are given here below. You can use the format: ‘Parent
Tag.Kid Tag’ or, if it is ‘unique in context,’ just ‘Kid Tag.’ The
first/left tag indicates a parent function, and the following tag indi-
cates a kid/child function.

EXAMPLE Tag: Maintain Standards.Maintain Rules.
Tag: Maintain Rules.Update Rule. ‘‘or just Update Rule if it is not ambiguous.’’

EXAMPLE You can also use the format:
Maintain Standards: Includes: Maintain Rules.
Maintain Standards: Includes: {Maintain Policy, Maintain Rules, Maintain Process}.
Or
Maintain Standards: Includes: Maintain Rules: Includes: Update Rule.
The latter example is explicit about the hierarchy.
Note: ‘{ . . . }’ is the Planguage symbol for a ‘set’ of things.

Specifying an Arbitrary Set of Functions

There is no implication when specifying functions and functional
relationships, that all siblings are specified or that the functions listed
are even direct descendants of the same parent. Any set of functions
can be given a common collective tag for reference:

Arbitrary Function Set: Type: Function {Function Tag 1, Function
Tag 2, . . . , Function Tag N}.

EXAMPLE Maintain Standards:
Type: Function.
Defined As: {Maintain Rules, Maintain Policy, Maintain Process, Others}.
Or more briefly:
Maintain Standards:
Function: {Maintain Rules, Maintain Policy, Maintain Process}.
Note: use of the parameters ‘Type’ and ‘Defined As’ are optional. It is a matter of style and
readability.

Inheritance of Higher Level Requirements

A function will automatically inherit any relevant specifications’ para-
meters from relevant higher system levels. This includes higher-level
(system-wide) performance requirements, budgets and any condition
constraints. These inherited parameters apply by implication, unless
there are other parameters that specifically override them in more local
function specifications.

90 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

Function Specification

A function specification defines all the currently interesting functional
aspects. It optionally includes the function description, functional
relationships (that is, the names of relevant supra-functions, sub-
functions and sibling functions), associated specific performance and
resource attributes, condition information [time, place, event], source
information, risks and assumptions, as well as many other parameters.
It even includes the implied or ‘default’ attributes’ properties inherited
from higher levels of the system of which the function is a member!

Here is an example of a client’s function specification (edited for
confidentiality):

EXAMPLE Emergency Stop:
Type: Function.
Description: <Requirement detail>.
Module Name: GEX.F124.
Users: {Machine Operator, Run Planner}.
Assumptions: The User Handbook describes this in detail for all <User Types>.
User Handbook: Section 1.3.5 [Version 1.0].
Planned Implemented: Early Next Year, Before Release 1.0.
Latest Implementation: Version 2.1. ‘‘Bug Correction: Bug XYZ.’’
Test: FT.Emergency Stop.
Test [System]: {FS.Normal Start, FS.Emergency Stop}.
Hardware Components: {Emergency Stop Button, Others}.
Owner: Carla.

The main parameters for function specification are described in the
following paragraphs.

Function Description

A function description describes only the action(s) of the function.

Function Tag 1: Function: <function description> <-Source.

EXAMPLE Refugee Transport: Moving refugees back to home villages. <- Charity Aid Manual.
‘‘The mode of transport will be determined by safety, and cost factors.’’

A more explicit ‘parameter-driven’ format may also be used for clarity:

EXAMPLE Tag: Refugee Transport.
Type: Function Requirement.
Description: Moving refugees back to home villages.
Source: Charity Aid Manual [Version¼ Last Year].
Dependency: The mode of transport will be determined by safety and cost factors.

Functions 91

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

The choice of more or less formality is governed by factors such as size
of plan, size and type of readership, familiarity with Planguage and
stage of planning (for example, ‘drafting ideas’ or ‘making a formal
plan’).

Functional Relationships

Functional relationships are used to define the relationships amongst
functions. For a specific function, the different kinds of relationship
include:

. Sub-functions: These are any lower-level functions that comprise a
function. Any sub-functions at the immediate lower level to the
specific function are known as Kid (Child) functions.

. Supra-functions: These are any higher level functions, which the
specific function forms a part of (is ‘sub-function’ of). The immedi-
ate supra-functions of a function are called the Parent functions.
The ultimate, hierarchical top level function, within an organization
or project, is usually called a ‘mission.’

. Sibling functions: These are any functions sharing at least one
parent function with another ‘sibling’ function.

Here are some examples of specifying functional relationships (see
Figure 3.1):

Defining Supra-functions (as a set of functions)

Supra-functions: Function {Function Tag 1, Function Tag 2, . . . ,
Function Tag N}.

EXAMPLE Tag: Update Rule.
Type: Function.
Supra-functions:
Function: {Maintain Rules, Maintain Standards, Implement Process Improvement}.

Referencing Supra-functions for a Function

A hierarchy of tags can be used to show the function hierarchy. You
can use bold or underline to emphasize which tag you are focusing on.
The non-emphasized part is the information about the supra-function
ancestry or genealogy.

A hierarchy of tags is connected by dots: ‘Tag 1.Tag 2.Tag 3’.

EXAMPLE Maintain Standards.Maintain Rules.Update Rule: Type: Function.

92 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

Defining Sibling Functions

The format examples below define siblings.

EXAMPLE Some Kids: Includes: {Kid1, Kid2}.

EXAMPLE All Kids: Consists Of: {Kid1, Kid2, Kid3, Kid Last}.

Attributes of a Function

Attributes of a function are any specific performance or resource
attributes specified in the function definition. They include past
benchmarks {Past, Record, Trend} describing a function’s current or
historic attributes and, if a function requirement is being specified,
they also include future target requirements {Goal, Budget, Stretch,
Wish} and constraints {Fail, Survival}. Qualifiers must be used in
those attribute specifications to define the specific instances of the
past or future use of the function.

EXAMPLE Goal [End Dec Next Year]: 22,000.

Attributes of a function can be described and directly connected to the
function in the following way:

TEMPLATE <Function Tag 1>:
Type: Function.
Description: <describe the function here, well enough to allow testing of it>.
Attribute 1: Scale: <?> Goal: <?>.
(Attribute 2: Scale: <?> Budget: <?>.)

Template for specifying the attributes of a Function.

Note: Fuzzy brackets, ‘< . . .>’ are used in a template to indicate what
to ‘fill in’. The fuzzy brackets may contain some instruction, which
will always be wiped out when the brackets are filled in. The paren-
thesis, ‘(. . .)’ are used to indicate (optional) specification types.

EXAMPLE Flagship Product:
Type: Function.
Description: Provide a mobile telephone service [Product Code 9998].
Reliability: Scale: Mean Hours between Faults. Goal [End Dec Next Year]:
22,000.
Battery Life: Scale: Hours Life. Goal [Standby]: 500, [Calling]: 50.
Function with specific local performance requirements. The specification of function,
Flagship Product contains explicit and local definition of two performance attri-
butes. Other attributes and specifications may be implied by other specifications
elsewhere.

Functions 93

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

Qualifiers

Qualifiers can be used to specify the set of conditions [time, place,
event] applying to a specific function.

Qualifiers can also be applied to functions in the following way:

TEMPLATE <Function Tag 1>:
Type: Function Requirement.
Qualifier: [time condition, place condition, event condition].
Description: <Define the function here>.
Template for a function with conditions. Note: the function is only ‘required’ or ‘valid’
when all elements of the qualifier are ‘true’.

EXAMPLE Installation:
Type: Function Requirement.
Qualifier: [Next Year, Activity¼Emergency Repair, Major Cities].
Description: Any job <our installers> must perform.

Any useful set of qualifiers is valid.

3.4 Rules: Function and Function Requirement
Specification

Gist: Specific Rules for specification of Functions and Function
Requirements.

Tag: Rules.FR.

Version: October 7, 2004.

Owner: TG.

Status: Draft.

Base: The rules for generic specification, Rules.GS and the rules for
requirement specification, Rules.RS apply.

R1: Functionality: Function requirements will specify what the
system must do and all specified functionality must be required by
specified stakeholders (Type: Function Requirement).

Function requirements are not themselves ‘unconditionally required.’
Their actual implementation will depend on their relative priority – as
specified by qualifiers and other parameters (such as ‘Authority’).

R2: Detail: The function requirement specification should be
specified in enough detail so that we know precisely what is
expected, and do not, and cannot, inadvertently assume or include

94 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

function requirements, which are not actually intended. It should
be ‘foolproof’.

Detailed definition within sub-functions can satisfy this need for clarity, the
higher level function does not need to hold all the information.

EXAMPLE Fuzzy Function Environment:
Gist: Ensuring Environmental Considerations.
This is a defective specification, given Rule R2. A more detailed function definition is
given in the following example.

EXAMPLE Ensuring Environmental Considerations:
Type: Function Requirement.
Description: All legally and competitively necessary functionality, immediate and
potential, regarding environmental protection, in the widest interpretation possible,
to protect us against lawsuits, and give us a clear positive reputation amongst
consumers.

R3: Not Degrees: Elementary function specifications must not be
described in terms of degrees or variability.

Elementary functions are binary (present or absent in totality) in
nature. If something is ‘variable in degrees,’ then it probably needs to be
reclassified, and redefined as a performance or resource specification linked
to a function.

R4: Not Design: The specified ‘function’ requirement must not be
a design idea (for example, a strategy, a device, a method or a process)
whose only or main justification is to satisfy a performance or resource
requirement of the system.

If the ‘function specification’ is really a design idea, then it shall be
re-classified as ‘Type: Design Idea’. If it was intended to support yet
undefined performance or resource requirements (like Design X Impacts
Performance Y), then action will be taken to properly define these attri-
bute requirements. Such action might justify rewriting the so-called
‘function’ as a design specification, as there is now at least one requirement
that the design idea can impact.

We must avoid ‘false’ function requirements, which are really just designs,
which someone assumes would be good for meeting unspecified and
unofficial performance requirements. (Local version of Rules.RS.R9:
Design Separation.)4

4 This rule intentionally duplicates RS.R9 as it is considered so important for functions.
Whenever such duplication occurs, specific reference should be made to the rule being
duplicated.

Functions 95

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

EXAMPLE Usability: ‘‘An example that violates R4 as the Type classification is incorrect! The
Description also has errors.’’
Type: Function Requirement.
Description: A state-of-the-art, user-friendly interface.
‘Usability’ is a performance attribute, and needs definition (using a Scale and other
parameters, such as Goal). If your intuition doesn’t tell you this, then ‘state of the art’ is a
clue as to ‘variability’ or ‘degree of goodness.’
‘Interface’ is a ‘thing to be designed’ in order to achieve various attributes, including, but
not limited to, ‘Usability.’ Specify this interface amongst the ‘design ideas.’ It is not a
‘what,’ but it is a ‘how’ (a design idea).

R5: Function Priority: If there is a required simple priority for
a function requirement, then it should be explicitly stated with
information about its authority and/or the source reference and the
reason for the priority.

Use the Priority parameter ‘Priority: After Y’ or use suitable qualifiers
‘[Before X].’ Use the Authority, Source and Rationale parameters to
specify the supporting information.

EXAMPLE Rationale: We must address Service Level Agreements as soon as possible to enable
the correct level of support to be given when a customer phones with a problem.
That is where we are incurring too much cost and tying up engineering support
resources. <- Customer Services Director.
See also Section 7.7, which discusses Priority Determination.

R6: Testable: A function must be specified, so that it is possible to
define an unambiguous test, to prove that it is later implemented
(Local version of Rules.RS.R8: Testable).

R7: Test: Any notions of how or what needs to be tested, in order to
validate a function may be described using the Planguage parameter
‘Test,’ with the function name as the qualifier.

The Test information is either specified with the function definition
or as a separate item.

EXAMPLE Function Y:
Type: Function Requirement.5

Description: Charging to Accounts.
Test [Function Y]: Tests shall be developed to demonstrate that this function is
available for all counties in this state, and prove that no other states or countries can
access it.

5 Note: By default, a ‘Function Requirement’ is assumed to be a ‘Function Target’.

96 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

Audit: Test [Function Requirement: Function Y]: We must demonstrate to internal
auditors that no counties, which are <financially insolvent> are allowed access to
this function <- Audit Report [August This Year].

3.5 Process Description: Function Requirement
Specification

Process: Function Requirements

Gist: A process for specification of function requirements.

Tag: Process.FR.

Version: October 7, 2004.

Owner: TG.

Status: Draft.

Entry Conditions

E1: The Generic Entry Conditions apply.

E2: You have the ability to observe comparable ‘real’ systems (see P3,
below).

Procedure

P1: Describe the hierarchical structures of the high-level function(s), as
sets of related function and sub-function tags (for example, F1.F2.F3).

P2: For each function tag (this also includes tags for sub-functions and
supra-functions as relevant), define the function, in the detail required
by the rules for function requirement specification (see Rules.FR in
Section 3.4).
Note: Focus on real functionality (‘what it does’) and exclude any design
ideas intended to satisfy performance and resource requirements.

P3:Where relevant: sample comparable ‘real systems’ to check the accuracy
of the function specifications. Correct the specifications as necessary.

P4: Check accuracy and completeness of function requirements, with
the people who are currently using similar existing systems. Correct
the specifications as necessary.

P5: Perform Specification Quality Control (SQC) on the draft func-
tion specifications. Check the quality level against the required quality
level, as specified by the exit conditions (see X1). If SQC fails, rewrite/

Functions 97

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

correct the function specifications (that is, revisit P1 to P4). Continue
P5 until the appropriate quality level is reached.

P6: Once the function specifications have exited SQC, get real current
system users (if any) to sign off agreement to them.

P7: Repeat any procedure above until the exit conditions can be satisfied.

Exit Conditions

X1: The Generic Exit Conditions apply.
By default, no more than 0.2 remaining major defects/page are allowed in
any of the function specifications. (A page is 300 words of non-commen-
tary text.)

X2: The relevant system users, if any, must have signed off the
function specification.

Simplified Function Requirement Specification Process

Process: Function Requirement Simplified.
Gist: An alternative simplified variation for Function Requirement
Specification.
Tag: Process.FRS.
Version: October 7, 2004. Owner: TG. Status: Draft.

Entry Conditions
None.

Procedure
P1: Declare a specific, ‘already specified’ and ‘currently opera-
tional’ system to be the ‘living map’ of the function requirements.

There is usually an old existing system of some kind. It is likely that a
future system must replace this old system, in order for the business
or organization to remain viable in the future.

Where relevant, use [qualifiers] to aid the mapping of the old to the
new.

The function specification detail is then continuously observable
‘in the real system.’ It should only be analyzed ‘as needed.’ Exit
immediately.

Exit Conditions
None.

Note: This method is useful when doing evolutionary delivery of
changes to impact performance/resource attributes and minor
changes to real functionality for an existing large system. You focus
on ‘improvement results,’ not ‘supporting functionality.’ I normally
apply this method to most real projects I get involved in (TG).

98 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

3.6 Principles: Function and Function Requirement
Specifications

These are principles for recognizing what is, and is not, a function and
also for working with functions.

1. The Principle of ‘What Function?’
Function is ‘what’ a system does, never ‘how well’ it does it or
‘how it does it so well.’

2. The Principle of ‘Thing with Attributes’
A function is the thing, which has the performance and resource
attributes attached to it.

3. The Principle of ‘Living Map’
Function specification is sometimes best done by declaring the
existing system to be a living map.

4. The Principle of ‘Part of Totality’
Functions are always part of some larger function and can prob-
ably be described by their own sub-functions.

5. The Principle of ‘Each to their Own’
Different functions require different performance and resource
attributes; so, one reason we specify the functions is to identify
and distinguish their required attributes.

6. The Principle of ‘Timing’
Different functions can be delivered to customers at different times,
so another reason to specify functions is to know ‘what to do when.’

7. The Principle of ‘Conditional Function’
Some functions may not be necessary, except under specified condi-
tions or events, and these conditions should be specified and exploited
in project planning. You don’t have to do what is not yet required!

8. The Principle of ‘Room with a View’
A function definition is not absolute; it is a viewpoint, and many
overlapping function views can be made and used fruitfully to
satisfy different needs.

9. The Principle of ‘Terrain does not change with the Maps’
The real system does not change just because you document func-
tion viewpoints and function hierarchies: correctly or incorrectly.

10. The Principle of ‘False Function Foils Fruits’
If you mistakenly request a design, as basic functionality, you will
limit your ability to improve the design to give better competitive
attributes.

Alternatively,
Don’t request ‘functions’ which are really ‘designs for performance’,
You might not get the performance you really want.

Functions 99

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

3.7 Additional Ideas: Function and Function
Requirement Specification

Mission

As mentioned earlier in this chapter, the ultimate top-level function of
any system is termed its ‘mission.’ A mission describes ‘what’ a specific
system does. Many organizations have explicit mission statements.

We could just as well call ‘mission’ the ‘top-level function.’ But the
concept and term ‘mission’ is well known, and for many purposes
works better than ‘function.’ For example, ‘The mission of this project
is Mars Exploration’ sounds better with ‘mission’ rather than ‘func-
tion.’ Keep in mind that any ‘mission’ is still really a sub-function of
some larger functional context.

Of course, a mission only provides a high-level description of a
system’s function. Further detail is provided by its sub-functions and
by its associated performance and resource attributes. Also, to fully
understand a system, we must have information about its environ-
ment. A system interacts with the environment in which it operates.

Note it is important that we not confuse ‘mission’ with ‘vision.’ A
vision statement is a higher-level concept. It can include ideas about
how well the mission will be conducted. For example, ‘‘Our vision for
the ‘Mars Mission’ is to get back alive, with substantial new scientific
knowledge.’’

Elementary and complex concepts

Functions and many other Planguage types can be described as being
elementary or complex concepts. The meaning of these terms, regard-
ing functions, is as follows:

. An elementary function is not decomposed into sub-functions. It may
be the case that it is unable to be broken down any further or a
deliberate decision may have been taken not to further decompose it.

. A complex function is composed of a set of at least two sub-
functions. The set of sub-functions can be any mix of relevant
complex and elementary functions. At the lowest level of functional
decomposition a complex function is defined completely in terms of
elementary functions.

EXAMPLE Planning a Project:
Type: Complex Function.
Includes: Elementary Function: {Reviewing Evo Step Feedback, Checking Require-
ment Specification is Valid, Selecting Next Evo Step, Allocating Staff to Evo Step}.
An example of elementary and complex functions.

100 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

Measuring Functionality

Functions are either ‘present or absent;’ they have a binary nature.
They are either documented or observable (testable) in a real system or
they are not.

Sets of complex functions can be thought of numerically as ‘per-
centage amounts’ of their ‘defined lists’ of elementary functions.
Elementary functions are (by definition) not divided into sub-
functions.

Complex functions are either 100% present (all elementary functions
in the defined complex function set are present) or they do not
‘wholly’ exist. For a complex function called ABC, you can talk about,
say, 90% of the set of elementary functions comprising ABC being
defined or implemented. In such a situation ABC itself, the entire
complex function, doesn’t exist yet; only known degrees of it are
defined or in place.

Additional Examples of Function Specification

Here are some Planguage ideas, additional to the ones shown in
Section 3.3, which can be applied to function specification. They give
more detail on the use of qualifiers.

EXAMPLE F3 [F499]: Receiving e-mail from Customers.
F3 is a valid function if, and only if, F499 is active or in existence. F499 is a ‘condition’
(specified in the format of a [qualifier]). F499 is detailed ‘elsewhere’. F3 is a complex
function specification because it has a qualifier, which must be determined by the
qualifier’s own definition
SYSX. F5: Sending e-mail to defined [Group].
‘F5’ is a ‘kid’ element of the complex function SYSX. The actual function implementation
will differ depending on the current definition of ‘Group’.
F6 [Date¼After First Release]: Get approval by electronic signature.
F6 is not ‘valid’ (for implementation, for testing) until after ‘First Release’ event has
taken place. First Release is a specification variable, depending on the actual release
date.
F7:
Qualifier: [Country¼ {European Union Countries, Norway, Not USA, Not
Canada}].
Definition: Maintain System XYZ Standards.
The function, F7 is valid for a defined set of countries. The qualifier parameter,
‘Country¼ ’ illustrates how a more explicit format can provide better readability for
Planguage novices.
F8:
Description: Answering direct-line telephone.
Speed: Scale: Number of <whole rings> heard at Receiving End, before Answer
Signal is <sensed>.

Functions 101

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

Past [Condition¼Employee Not At Desk]: 4.
Goal [Condition¼Employee Not At Desk]: 1.

Answer: Scale: Probability that Caller is satisfied with the Given Answer.
Past [OK]: 50%, Goal [OK, Version 6]: 90%.
OK: Defined As: {Condition¼Correct Employee, Hours¼ 0800 to 1700}.

In this example, the function, F8 is defined together with multiple attributes,
both benchmark and target. Notice the qualifier ‘OK’ is defined in a separate
statement to make reuse of it easier. This also prevents repetition, saves space and
saves time when making changes.

3.8 Further Example/Case Study: Function
Specification for an Airborne Command and
Control System

This is an extract from the top-level function specification for a
real system (The system is now operational and delivered to
customers).

Note: Mapping functions in detail is not the prime intention
when using Planguage. The aim is to establish an evolutionary
plan, which focuses on result delivery to some defined system
stakeholders. This aim does not necessarily require any ‘delivery’
of additional functionality! Delivering ‘designs,’ to just improve
performance and resource attributes for existing functionality is
quite common. The level of understanding of the functions
needed at the planning stage is merely that required to support
the system designers and others involved in the requirement
specification process. Specifically, this means that a complete, in-
depth description of all the system functions and processes is not
required. I strongly recommend investigating functions in detail
only as required, at the design stage of each evolutionary delivery
step. (There may well be exceptions to this, but don’t waste
resources.)

Airborne Command and Control: ACC.
Type: System.
Includes: Type: Sub-system:
M: Mission.
P: Planning.
D: Data Handler.
C: Communications Intelligence.

ACC.D.MOP: ‘‘MOP stands for ‘Manual Operation(s)’.’’
Type: Function.

102 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

Includes:
BIT: Provide ‘Built In Test.’
DATAB: Provide database diagnostics. <Various levels of

checking>. Not including <on mission>.
DATAELEMENT: Check <Data element reasonableness> when

<on mission>.
DATALINK: Interchange data links manually by operators.

‘‘Component from our mother company.’’
DIAG: Display all faults to operator and log on file.
DISPLAY: Display error and fault detection data to operator.
ESM: Display error messages from communications/

non-communications system.
FMS: Display any loss of data from Flight Management

System.
HEARTBEAT: Supervise computer node <status> by heart-

beat <signaling>.
INIT: Test data destructive HW when initializing the

<system>.
LINK: Display <status information> of the data links.
LOG: <Save on file> fault detection data and

detailed test information.
PRINTER: Report <printer status> from the AX-BUS when

any fault occurs.
RADAR: Display loss of data from radar.

This was from the first draft of the function specification. Many
concepts are marked with <fuzzy brackets> and require further work
to precisely define them.

D: Data Handler.MOP

M: Mission

P: Planning

C: Communications
Intelligence

DATALINK

BIT HEARTBEAT

INIT
DISPLAY

LOG

DIAG

RADAR

FMS

ESM
LINK

PRINTERDATAB

DATAELEMENT

ACC: Airborne
Command and Control

Figure 3.2
Functions within the Airborne Command and Control (ACC) System.

Functions 103

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

Here is an example of a function requirement:
(Notice the use of a Planguage template. The template parameters are given in
bold. See the next section for a more detailed specification of this template.)

Example of a Function Requirement

Tag: DATADIAG:
Type: Function Requirement. ‘‘Note, DATADIAG is not ‘real’, it is an
example made up using the basic ideas named in the real case
above. It is for teaching purposes only.’’
Version: October 7, 2004 21:38.
Owner: Quality Assurance Division.
Implementer: Database Team.
Stakeholders: Quality Assurance Division, Maintenance Support.
Gist: Obtain Database Diagnostics.
Description:
S1: To monitor database quality. <Various levels of checking>.
S2: To report database diagnostics.
S3: To integrate with the automatic recovery system.
S4: To run in parallel with the operational use of the database as a
background function.
S5: Monitoring operation to be optional. For example, to be off
when <on mission>.
S6: Monitoring operation to be user-driven by parameters to enable
selected sampling of specific classes of database records, data
elements and relationships.
Supra-function: ACC.D.MOP. ‘‘This is the specification of the supra-
function of DATADIAG from some viewpoint.’’
Sub-functions: None specified.
Supports: {System Recovery, BugMaintenance, Database Integrity}.
Assumptions:
A1: This sub-system will not degrade operational database perfor-
mance by more than 5%.
A2: It will be cheaper to automate this function than to do analysis
manually.
A3: It will be faster and more reliable than manual checking.
Dependencies: D1: The database system itself must be defined and
operational.
Risks: R1: Failure to update this function in parallel with the data-
base structure.
Priority: This function must be available to some degree in first
customer use releases. It will also be used in pre-release systems
testing to some undefined degree.
Test: T1: This function shall be used in system testing andan early version
of it can and should be made available in parallel with the develop-
ment of the database itself. The function shall be tested by insertion of
artificial database defects, and shall discover 100% of these.
Financial Budget: The cost of developing and maintaining this func-
tion is assumed to be between 10% and 50% of the cost of building
and maintaining the database software in total.
Function Intranet Location: ACC. Software.DB-Diagnosis.

104 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

3.9 Diagrams/Icons: Function and Function
Requirement Specification

Mission
F1

F1.1 F1.2

OtherProcesses

P1 P2

Performance

Implementation
Resources

Maintenance
Resources

Operational
Resources

Availability

Usability

Adaptability

Other

Work Capacity

Other

Time to Market

Cost Reduction

Designs

Many-to-many relationships
between the different hierarchies

FunctionsResources

Other

Time

Effort

Financial
Resources

Figure 3.3
This shows the four main system attribute types: resource, function, performance and
design. It also shows the processes, which implement the functions. Using Planguage,
the complex relationships amongst these four different types can be specified. For
example, a specific performance level might apply only to a handful of functions rather
than the entire system, or a function might be implemented by several processes, or
different resources can be specifically allocated to different functions.

Functions 105

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

Template for Function Specification <with hints>

Tag: <Tag name for the function>.
Type: <{Function Specification,
Function (Target) Requirement,6

Function Constraint}>.
=========================== Basic Information ==========================
Version: <Date or other version number>.
Status: <{Draft, SQC Exited, Approved, Rejected}>.
Quality Level: <Maximum remaining major defects/page, sample size, date>.
Owner: <Name the role/email/person responsible for changes and updates to this
specification>.
Stakeholders: <Name any stakeholders with an interest in this specification>.
Gist: <Give a 5 to 20 word summary of the nature of this function>.
Description: <Give a detailed, unambiguous description of the function, or a tag reference to
some place where it is detailed. Remember to include definitions of any local terms>.
============================= Relationships ============================
Supra-functions: <List tag of function/mission, which this function is a part of. A hierarchy of
tags, such as A.B.C, is even more illuminating. Note: an alternative way of expressing supra-
function is to use Is Part Of>.
Sub-functions: <List the tags of any immediate sub-functions (that is, the next level down), of
this function. Note: alternative ways of expressing sub-functions are Includes and Consists
Of>.
Is Impacted By: <List the tags of any design ideas or Evo steps delivering, or capable of
delivering, this function. The actual function is NOT modified by the design idea, but its
presence in the system is, or can be, altered in some way. This is an Impact Estimation table
relationship>.
Linked To: <List names or tags of any other system specifications, which this one is related to
intimately, in addition to the above specified hierarchical function relations and IE-related links.
Note: an alternative way is to express such a relationship is to use Supports or Is Supported By,
as appropriate>.
============================= Measurement ============================
Test: <Refer to tags of any test plan or/and test cases, which deal with this function>.

====================== Priority and Risk Management =====================
Rationale: < Justify the existence of this function. Why is this function necessary? >.
Value: <Name [Stakeholder, time, place, event>]: <Quantify, or express in words, the value
claimed as a result of delivering the requirement>.
Assumptions: <Specify, or refer to tags of any assumptions in connection with this function,
which could cause problems if they were not true, or later became invalid>.
Dependencies: <Using text or tags, name anything, which is dependent on this function in any
significant way, or which this function itself, is dependent on in any significant way>.
Risks: <List or refer to tags of anything, which could cause malfunction, delay, or negative
impacts on plans, requirements and expected results>.
Priority: <Name, using tags, any system elements, which this function can clearly be done
after or must clearly be done before. Give any relevant reasons>.
Issues: <State any known issues>.
=========================== Specific Budgets ===========================
Financial Budget: <Refer to the allocated money for planning and implementation (which
includes test) of this function>.

Figure 3.4
A template for Function Specification.

6 Note: By default, a ‘Function Requirement’ is assumed to be a ‘Function Target’.

106 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

3.10 Summary: Function and Function
Requirement Specification

Functions are ‘what ’ a system does. The concept of a pure ‘function’
does not include information about the function’s performance attri-
butes (how well a function is done); nor about the function’s condi-
tions [when, where, if]; nor about design ideas (how, a function
achieves its attributes at the required levels).

My view of the discipline of functions is that they are ‘boring, but
essential, necessities.’ They are the basics of the business or field you
are dealing with, and probably exactly the same as those of your
competitors in the same market.

The ‘real competitive action’ lies in identifying the interesting (com-
petitive) performance and resource attributes for the functions, then
establishing their required competitive levels and, then finding inter-
esting ways (designs) to achieve them.

So, you can view functions as providing the framework ‘supporting’
the performance and resource attributes necessary for winning.

Any attempt to implement a function without trying to gain control
over its performance and cost attributes, will result in unplanned,
uncontrolled and thus probably undesired attributes. You must con-
trol attributes of functions to control the ‘Risks.’

Many of the common problems, which systems engineers experience
(such as deadline control, cost overruns and bad quality) are, in my
view, significantly caused by:

. Specifying poorly-justified and insufficiently-detailed ‘design’ and
calling it ‘Function Requirements.’

. Articulating the performance and costs of functions in ways that
can’t be measured or tested.

. Focusing on testing functions alone, rather than the key stake-
holder-value performance and cost attributes.

Functions are merely real-world reference points. They are not the
interesting ‘problem’ for competitive systems engineering.

Functions 107

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH003.3D – 81 – [81–108/28] 29.6.2005
12:38PM

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

Chapter

4

PERFORMANCE
How Good?

GLOSSARY CONCEPTS

Performance
Quality
Resource Saving
Workload Capacity
Scale
Meter
Benchmark
Past
Record
Trend
Target
Goal/Budget
Stretch
Wish
Constraint
Fail
Survival

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

4.1 Introduction

Performance: Quality, Resource Savings
and Workload Capacity

Performance describes the system benefits: how good the system is and
how it affects the external world. Performance attributes state the
actual and/or potential benefits and effects experienced by stake-
holders in their environments.

Performance attributes are the output attributes; they state the effec-
tiveness of a system. By contrast, the input (or ‘fuel’) attributes are the
resources/costs of developing and/or maintaining a system that exhibits

Consider the Performance of :

A flower
• fragrance
 • attractiveness
 • pollen quantity
 • toxicity
 • bloom frequency

A person
• balance
 • intelligence
 • courtesy
 • helpfulness

A car
• comfort
 • safety
 • speed
 • capacity

Figure 4.1
Some examples of performance concepts.

Performance 111

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

those performance attributes. The performance to cost ratio for a system
is a measure of its efficiency.

Performance attributes are scalar. As discussed in Chapter 2, there are
three basic types:

. Quality: The quality attributes specify how well the system per-
forms. The term ‘quality’ is used here in the ordinary widest sense of
the word. It is by no means limited to the narrow ‘defect free’
notion that some people mean when using it. How many qualities
can you list of a great car, a dream house, an excellent employee, a
great personal computer or a good wine? We include all such ideas
in our broad concept of quality.

. Resource Savings: These specify how much resource is required to be
saved compared to the resource usage/consumption by some reference
or benchmark system. Achieving specific savings is frequently a driver
for system development; for example, cutting the financial cost of
carrying out transactions or reducing the time taken to carry out a task.
Note, for this performance type, the saving of resource is the prime
requirement, it is not simply a fortuitous by-product of the system
improvements; it is what a stakeholder has specifically demanded.

. Workload Capacity: These specify how much work the system can
perform: the capacity of the system. For example, the average speed
for completing certain tasks, the capacity to store information and
the maximum number of users supported.

Performance requirements must express quantitatively the stake-
holders’ requirements. I have come to believe, through experience,
that all the performance attributes we want to control in real systems
are capable of being expressed measurably. I find it intolerable that
critical performance ideas are expressed in mere non-quantified words.
Expressions like ‘‘vastly increased productivity’’ annoy me! Not one of
those three words has a precise and agreed unambiguous interpreta-
tion. Yet, I have consistently encountered a world in multinational
high-tech companies, amongst educated, intelligent and experienced
people, where such vague expressions of performance, especially of

PerformanceFunctionResource

Figure 4.2
A simple system representation. It consists of a function, and its performance and resource
(cost) attributes.

112 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

quality, are tolerated; such expressions seem not even recognized as
being dangerous and capable of improvement.

Performance attributes are more than a collection of names like
‘reliability,’ ‘user friendliness,’ ‘innovation,’ ‘transaction time’ and
‘cost saving.’ Each performance attribute needs to be precisely defined
by a set of numeric, measurable, testable specifications. Each perfor-
mance attribute specification will include different specified levels for
different conditions [time, place and event]. Unless there is clear
communication in terms of numeric requirements, there is every
chance of the real requirements not being met; and we have no clear
indication of the criteria for success and failure.

Sometimes, it seems difficult to identify satisfactory scales of measure.
Often, the only ones that can be found are indirect, imprecise and have
other problems associated with them. From my point of view, these
problems can be tolerated. The specific scales of measure, and meters
for measuring, can always be worked on and improved over time. In all
cases, an attempt at quantified specification is better than vague words.

Over the years, I have found people immediately receptive to the idea
that they should quantify all their performance ideas. The only ques-
tion has been ‘‘How?’’ This chapter begins to answer this question. It
describes the main Planguage parameters you can use to specify
quantified performance attributes.

4.2 Practical Example: Performance
Requirements

Let us start with an example of how to quantify a typical performance
requirement.

‘‘Increased ease of service’’ is a term I found in a set of design specifications
for a mobile phone handset. It was not defined further. It sounded like a
nice thing to have. The telecommunications supplier’s culture allowed it
to go unchallenged. In fact, in the few dozen pages of specification, there
were actually 10 distinct design ideas, each one with a bullet-point
claiming it would contribute to ‘‘better serviceability’’ for the new phone.

I asked my client if they had any quantified performance requirement
specification for the ‘‘increased ease of service’’ for the phone. They
had not, so we agreed to explore some possible definitions. We soon
discovered that ‘Serviceability’ for the mobile phone had numerous
elementary components; it was a complex objective.

Here is an extract of what we did. It was a three-step process.

Performance 113

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

Step 1

We identified the different components of Serviceability and gave
each of them a name:

Serviceability: ‘‘is comprised of the following elementary and complex
objectives.’’
Type: Quality Requirement:

{Repair,
Enhancement,
Fashion Changes,
Installation,
Reconfiguration}.

Step 2

We described each of these objectives by defining and agreeing a Gist
(‘Gist’ meaning the essence or main point):

Repair: Gist: Speed of repair of faults under given conditions.
Enhancement: Gist: Speed of introducing hardware or software
enhancements.
Fashion Changes: Gist: Ease of customer varying fashion attachments.
Installation: Gist: Speed of installing telephone in defined settings (for
example, in an automobile).
Reconfiguration: Gist: Work-hours to modify for varied uses (for
example, coupling to personal computer or power supplies).

In fact, we then further decomposed these into a total of 18 elemen-
tary objectives. However, such detail is not required for this example!

Step 3

Once we were satisfied that we had captured the scope of Service-
ability, we added further definition to specify the requirement in
measurable and testable terms: we identified a Scale and a practical
way of measuring on that Scale (a Meter). For example:

Repair:
Ambition: Improve the speed of repair of faults substantially, under
given conditions.
Scale: Hours to repair or replace, from fault occurrence to when
customer can use faultlessly, where they intended.
Meter [Product Acceptance]: A formal Field Test with at least 20
representative cases, [Field Audit]: Unannounced Field Test at random.
===================== Benchmarks ====================
Past [Product ¼ Phone XYZ, Home Market, Qualified Dealer Shop]:
{0.1 hours at Qualified Dealer Shop þ 0.9 hours for the Customer to
transit to/from Qualified Dealer Shop}.

114 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

Record [Competitor Product XX]: 0.5 hours average. ‘‘Because they
drive a spare to the customer office.’’
Trend [USA Market, Large Corporate Users]: 0.3 hours. ‘‘As on-site
spares for large customers.’’
======================= Targets ======================
Goal [NextNew Product Release, UrbanAreas, Personal Users]: 0.8 hours
in total, [Next New Product Release, USA Market, Large Corporate
Users]: 0.2 hours <- Marketing Requirement, February 3 This Year.
===================== Constraints ====================
Fail [Next New Product Release, Large Corporate Users]: 0.5 hours or
worse on average <- Marketing Requirement, February 3 This Year.
Survival [Next New Product Release, All Markets]: 1.0 hours <- TG.

Repair
[Next New
Product
Release]

Time in
Hours

1.0 0.0

Record
[Competitor
Product XX]

0.5 0.20.30.8

Goal
[Next New Product Release,
Urban Areas, Personal Users]

Fail
[Next New Product Release,
Large Corporate Users]

Goal
[Next New Product Release,
USA Market,
Large Corporate Users]

Survival
[Next New Product Release, All Markets]

Trend
[USA Market,
Large Corporate Users]

Past
[Phone XYZ,
Home Market,
Qualified Dealer Shop]

Mobile Phone
Function Serviceability

Enhancement

Installation

Fashion Changes

Reconfiguration

Repair

Figure 4.3
Serviceability, a complex performance requirement, decomposes into numerous perfor-
mance attributes. One of these, the quality, Repair is expanded to show its targets and
constraints and, the supporting benchmark information.

Performance 115

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

At this point, everyone realized that we needed to do some ‘serious’
work defining our Serviceability objective. Only with an improved
requirement specification, could we begin to evaluate our ten specified
design ideas that claimed ‘‘increased ease of service’’!

Whoever had originally written the phrase ‘‘increased ease of service’’ had
failed to communicate a precise, unambiguous requirement. Of consider-
able concern, there was clearly no means of agreeing the specific require-
ment level with other stakeholders. Nor was there any means of verifying
we had met the requirement on delivery. In practice, the engineers were
designing the phone without any significant input fromMarketing.

These same problems, of ‘lack of clarity’ and ‘lack of necessary detail’,
also occur elsewhere. In your business too!

4.3 Language Core: Scalar Attributes

All performance and resource/cost attributes are scalar. The Planguage
parameters used for specifying scalar attributes1 include:

. Ambition

. Scale

. Meter

. Past

. Record

. Trend

. Goal (abbreviation for ‘Planned Goal’ for performance attributes)

. Budget (abbreviation for ‘Planned Budget’ for resource attributes)

. Stretch (abbreviation for ‘Stretch Goal’ or ‘Stretch Budget’)

. Wish (abbreviation for ‘Wish Goal’ or ‘Wish Budget’)

. Fail

. Survival (abbreviation for ‘Survival Limit’).

Each scalar attribute must be specified using a tag, and an appropriate
set of these parameters. Past, Record and Trend are used to specify
benchmarks, Goal or Budget,2 Stretch and Wish are used to specify
targets, and Fail and Survival are used to specify constraints.

1 For the sake of simplicity, only the abbreviations for these parameters tend to be used
in the main text of this book. For example, where ‘Stretch’ is used, distinction is not
made between ‘Stretch Goal’ and ‘Stretch Budget’ as it is evident from the context
whether you are specifying a goal or a budget.
2 In the past, ‘Plan’ was used instead of ‘Goal’ and ‘Budget.’ Use of ‘Plan’ is still
perfectly acceptable if it better suits your organizational culture. ‘Plan’ does have the
advantage of being simpler and of better conveying to people that it is a level that is
subject to stakeholder acceptance and negotiation.

116 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

The numeric values of the target, constraint and benchmark parameters
define the attribute levels. Note that benchmarks refer to existing or past
values, or future estimates extrapolated from past values, whereas targets
and constraints are future requirement values.

Here is some further detail about the main specification concepts:

Ambition

This is a descriptive parameter used to express the level of expected
performance in words.

Scale

The heart of a scalar attribute specification is the ‘scale of measure’
parameter, Scale (sometimes also known as the ‘units of measure’
parameter). The Scale states the specific definition of a scalar attribute
that we intend to use. It defines the units for measurement (for
example, ‘bits per second,’ ‘miles per hour,’ ‘mean time between
failure’ and ‘number of new customer contracts per year’).

While suitable scales of measure for resources/costs are relatively
obvious to most people, identifying suitable Scales for performance
attributes, especially for qualities, is more challenging. There are, as
yet, few widely recognized standardized Scale definitions available.
(See further discussion in the next chapter, ‘Scales of Measure’.)

Scale: A scale of measure, stating the units to be used for numerically
expressing a scalar attribute level.

Meter

The Scale parameter is supported by the Meter parameter, which
defines, references or outlines a practical and economic method for
actually carrying out the measurement of the numeric level of the
attribute in a real system. More than one Meter may be required if the
means of measuring is going to alter over time or vary according to the
place and conditions.

Meter: A practical method for measuring and testing a scalar attribute
level, on a defined Scale.

Benchmarks

The benchmark parameters, Past, Record and Trend are used for
specifying historical, current or extrapolated performance levels. It is

Performance 117

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

important that we understand what our own existing systems, our
competitors’ systems and, more generally, any other relevant systems,
are achieving.

Past: A relevant benchmark level worth consideration that has already
been achieved in some defined [time, place, event] conditions. We are
interested in the levels achieved by any relevant existing system (our
own, competitive, or any other system).

Record: A Past, which is the best-known result; a state-of-the-art
numeric value.

Trend: An extrapolation of past data, trends and emerging technology
to a defined [time, place, event] conditions. Aside from our own
project’s plans to improve this level, what future levels are likely to
be achieved by others? What will we be competing with?

Targets

The target parameters, Goal or Budget, Stretch and Wish, define the
attribute levels for success, motivation and dreams respectively.

Goal: A future required level under defined [time, place, event]
conditions, which has to be achieved to claim success in meeting a
performance attribute requirement. Goal levels are also a signal to stop
investing in levels better than this one, as the value gained is most
likely insufficient to justify additional costs.

Budget: A future required level under defined [time, place, event]
conditions, which has to be achieved to claim success in staying within
a resource attribute requirement. A signal to worry about resource
usage when more resources are estimated to be needed, or are really
used, than this ‘acceptable’ level of cost.

Stretch: A future desired level, under defined [time, place, event]
conditions, which is designed to challenge people to exceed Goal
levels or use less than Budget levels.

Wish: A future desired level, currently a ‘dream’ target level, under
defined [time, place, event] conditions, which has some value to a
stakeholder. The requirement is not planned or promised, due to
technical or cost reasons, but it is recorded and kept in the requirement
database (even if not acceptable now) so that it can be borne in mind.

Constraints

The constraint parameters, Fail and Survival, state the levels for some
kind of system failure and system survival respectively.

118 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

Fail: A future required level under defined [time, place, event] condi-
tions, that is necessary to avoid some kind and degree of system
failure, while still allowing the system to operate.

Survival: A future required level under defined [time, place, event]
conditions, which is necessary to avoid total system demise. In other
words, it is a level necessary for the survival or viable operation of the
system.

Conditions

It is also important to distinguish amongst the different numeric levels
required for different conditions. Different times, different places and
different events can all give rise to requirements for different attribute
levels. Qualifiers should be used to specify the qualifying conditions
for the different specified levels. Each of the above Planguage para-
meters will normally contain a qualifier and/or be within the scope of
a qualifier defined elsewhere that applies to this specification. A
qualifier can be used after almost any tag or parameter to be specific
about dates, markets, products, components, stakeholders and other
conditions. (See also further discussion of qualifiers in Section 2.7.)

[Time, Place, Event] or [When, Where, If]: Qualifiers specify
the conditions for a specification being valid, in force or effective.
All conditions must be ‘true’ for the associated specification to be
valid.

Here is an example to illustrate the parameters just defined:

EXAMPLE Usability [New Product Line, Major Markets]:
Ambition: To achieve a low average consumer time to learn to use our telephone
answerer under stated conditions.
Scale: Average number of minutes for defined [Representative Consumers and all
their household family members over 5 years old] to learn to use defined [Basic Daily
Use Functions] correctly.
Meter [Product Acceptance]: A formal Field Test with at least 20 representative cases,
[Field Audit]: Unannounced Field Test at random.
Past [Product XYZ, Home Market, People between 30 and 40 years old, in homes in
Urban Areas, <for one explanation & demonstration>]: 10 minutes.
Record [Competitor Product XX, Field Trials]: <5 minutes?> <- one single case
reported,
[USA Market, S Corporation]: 10 seconds <- Public Market Intelligence Report.
Fail [Next New Product Release, Children over 10]: 5 minutes <- Marketing
Requirements February 3 Last Year.
Goal [Next New Product Release, Urban Areas, Personal Buyers]: 5 minutes,
[Next New Product Release, USA Market, Large Corporate Users]: 5 minutes <-
Marketing Requirements February 3 Last Year.
Stretch [Next Year]: (Record [USA Market] – 10%).

Performance 119

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

Table 4.1 Basic Planguage parameters for scalar attribute specification. See also Table 1.1 for the
additional basic generic Planguage parameters.

Planguage Parameters for Scalar Attributes

Scalar Attribute
Parameter

Meaning Used for Note also

Scale: Definition of the scale or
units of measure

Defining the variable varying
performance or cost concept
with precision and clarity

Contractual use
Icon: -|-|-

Meter: Definition of how we are
going to measure or test the
level of this attribute

Determining the real world
numeric levels in practice

Contractual use
Icon: -|?| -

Past: A known measured
benchmark of an
interesting past or current
level

Providing a baseline attribute
level

A useful reference
point
A benchmark
Icon: <

Record: A ‘state of the art’ level If a Goal or Budget is near to
or better than the Record, then
a warning of extra risk and cost
is implied

A useful reference
point
A benchmark
Icon: <<

Trend: From extrapolation of
existing data, an estimated
future level

A cross-check that the Goal or
Budget level is ambitious/
competitive enough

A useful reference
point
A benchmark
Icon: ?<

For performance
attributes, Goal:
For resource
attributes, Budget:

A future, target
requirement level, to be
met or bettered for success
and stakeholder satisfaction

Understanding the future
requirement level. Knowing
when to stop designing,
investing and developing

A contractual full
payment level
A target
Icon: >

Stretch: An interesting, but
difficult to attain, target
level

To motivate teams to do better
than currently considered
practical or economic

No contractual
commitment
A target to strive
towards as a challenge
Icon: >þ

Wish: A desired level, dreamed of
by some stakeholder, even
if unrealistic

Better understanding of the
stakeholder needs. Potential
requirement direction when
feasible later

No contractual
commitment
whatsoever –
completely
unbudgeted
A stakeholder ‘dream’
to bear in mind
Icon: >?

Fail: A future requirement level,
which is necessary to avoid
some sort of system failure.

Stating a minimum
requirement for delivery levels

Contractual use as a
minimum payment
level

A constraint Understanding the minimum
levels for any tradeoffs

Icon: >>

Survival:* A future requirement level,
which is necessary to avoid
total system failure.
A constraint

Stating an absolute minimum
requirement for any valid
delivery or operation
Failure to meet a Survival level
means total system failure

Contractual use as a
‘non-payment’ level
Icon: []
Note this icon is
deliberately similar to
that used for qualifiers

Note : *The Catastrophe parameter is an alternative to the Survival parameter. See the Glossary. ‘Survival’ is used in the text of this book.

120 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

Note, terms defined by the project such as ‘Major Markets’ are
capitalized to indicate that they are already, or will be shortly, more
formally defined elsewhere. They will not necessarily be defined in
these textbook examples. For example,

Major Markets: Defined As: {USA, Japan, Europe, India}.

There are other additional parameters that can be used to describe a
scalar requirement. Some of these are shown in Figure 4.12, Scalar
Requirement Template.

Past: any useful reference
point. A performance or
resource level achieved,
in say, your old product or
a competitor’s organization

Record: best in some class, state
of the art. Something to beat.
A challenge for you. An extreme
Past

Trend: a future
estimate based
on the Past

Survival: a level
needed for
system survival

Goal: the practical level
needed for satisfaction,
happiness, joy and
100% full payment!

Wish: a level valued by a
stakeholder, but which might
not be feasible. Project is not
committed to it

Stretch: a level that is valued,
yet presents a challenge to attain

Fail: a level needed
to avoid a system failure
of some kind

Note: This diagram applies to performance attributes and shows performance scale arrows.
With a change to show scalar resource arrows, all the parameters also apply to resource
attributes, apart from the Goal parameter, which is replaced by Budget for resource attributes.

Figure 4.4
Performance benchmarks, targets and constraints.

Performance 121

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

4.4 Rules: Scalar Requirements

Tag: Rules.SR.

Version: October 7, 2004.

Owner: TG.

Status: Draft.

Gist: Rules for Scalar Requirement Specification.

Performance
Requirements

Process.PR

Sources:
• Marketing documentation
• Contracts
• Current system
 documentation including
 product plans and Evo
 feedback
• Current system reviews
• Current performance
 issues
• Any guidance and/or
 other standards in addition
 to rules as found in
 handbooks and catalogues

Performance
Requirements

Generic
Specification

Rules

Rules.GS

Requirement
Specification

Rules

Rules.RS

Scalar
Requirement

and Scale
Definition

Rules

Rules.SR
Rules.SD

Figure 4.5
Performance requirements are subject to at least three types of rules for specification.
These rules should be used in the SQC of performance requirements.

122 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

Note: These rules apply to both performance requirement specifica-
tion and to resource requirement specification.

Base: The generic rules for specification (Rules.GS), the rules for
requirement specification (Rules.RS) and the specific rules for scale
definition (Rules.SD) apply.

R1: Completeness: All scalar attributes, that are arguably critical to
success or failure, shall be identified, specified and thoroughly defined.

R2: Explode: Where appropriate, a complex scalar requirement shall
be specified in detail using a set of complex and/or elementary scalar
attributes.

Note: In addition to detailing by means of elementary specifications, you
can continue decomposing scalar specifications by using sets of [qualifiers].

R3: Scale: All elementary scalar attributes must define a single numeric
Scale, fully and unambiguously, or reference such a definition.

R4: Meter: A practical and economic Meter, or set of Meters, shall
be specified for tracking levels on each Scale. A reference to a full
definition or standard measuring process for all identified Meters
must be given. As an initial minimum for a new Meter, an outline
of the Meter measuring process is permissible.

R5: Benchmark: A reasonable attempt shall be made to specify
benchmarks {Past, Record, Trend} for our current system, and for
relevant competitive systems. Explicit acknowledgement must be
made where there is no known benchmark information.

R6: Requirement: At least one target level {Goal or Budget, Stretch,
Wish} or Constraint {Fail, Survival} must be stated for a scalar
attribute specification to classify as a requirement specification. A
specification with only benchmarks is an analytical specification, but not
a requirement of any kind.

R7: Goal or Budget: The numeric levels needed to meet requirements
fully (and so achieve success) must be specified. In other words, one or
more [qualifier defined] Goal or Budget targets must be specified. The
need for target levels to specifically cover all short term, long term and
special cases must be considered.

R8: Stretch: When you want to indicate an engineering challenge,
in order to motivate design engineers to find designs to achieve
better-than-expected levels, specify a ‘Stretch’ target (using a Stretch
parameter). You should also include information about the benefits of
reaching this target (using Rationale).

R9: Wish: Any known stakeholder wish level (a level that has some
value to a stakeholder, but only a level to be dreamed of, it is an

Performance 123

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

uncommitted level) shall be captured in a ‘Wish’ statement (with
Rationale). Even if the Wish level cannot realistically yet be converted into
a practical target level, it is valuable competitive marketing information
and may allow us to better satisfy the stakeholder at some future point.

R10: Fail: Any known numeric levels to avoid system, political, legal, social,
or economic loss or pain must be specified. In other words, one or more
[qualifier defined] Fail constraints must be specified. Several Fail levels may
be useful for a variety of short term, long term, and special situations.

R11: Survival: The numeric levels to avoid complete system failure (a
totally unusable or unrecoverable system) must be specified. In other
words, any [qualifier defined] constraint levels at which system survival
is completely at risk must be identified, using Survival parameters.

4.5 Process Description: Performance
Requirements

Process: Performance Requirements.

Tag: Process.PR.

Version: October 7, 2004.

Owner: TG.

Status: Draft.

Stretch

Goal

Stretch

Wish

Fail

Survival
Fail (Too Low)

Survival
Wish

Survival

Survival

Performance Resource

Budget

Figure 4.6
How the scalar requirement parameters can be used to describe real-world situations.

124 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

Entry Conditions

E1: The Generic Entry Conditions apply. The list of valid source
documents could include marketing documentation, contracts, cur-
rent system documentation, current system reviews, any lists of system
performance issues and any initial design specifications. It specifically
includes any documentation of standards that applies, such as hand-
books and catalogues. The required specification standards include
{Rules.GS, Rules.RS, Rules.SR and Rules.SD}.

Procedure

P1: Scan all input (source) documents for implied (for example, via
design specifications) or explicitly expressed performance requirements.
Build a list of performance requirements categorized by stakeholder type.

P2: Next, scan all input (source) documents (including any design
documents and strategic plans) for design ideas. Mark the design ideas
as requirements, ONLY if they are intentional design constraints (as
they are then true requirements). Otherwise, if they are not constraints,
determine and specify the possible performance requirements that led
to these design ideas being specified. Add these ‘implied’ performance
requirements to the overall list of requirements. You can keep the design
ideas, separately, for design phases. But get them out of the real require-
ments. You might well cross-reference the implied requirements (Impacts:
<Requirement X>.) and design suggestions (Is Supported By: <Design
Idea Y>.) for future understanding of why they are there.

P3: Using the P1 lists (explicit requirements) and P2 lists (requirements
derived from design ideas), establish a comprehensive list of candidate
performance requirements. Specify at least Tag, and possibly a Gist or
Ambition. Include cross-reference to any Sources (<-), Assumptions,
Dependencies and Risks you can determine.

P4: Check handbooks, catalogues and lists of standard performance
requirements for ideas of additional performance requirements, which
you should consider. Remember that you need to specify things that are
currently taken for granted because they are not problems in any of your
current products or systems. We have to keep our system healthy in the
future, consciously!

P5: Consider the total stakeholder environment. This involves not just
your one or two users and customers, but more likely, your ten or
more internal and external stakeholders, such as help desk, installers,
politicians, marketing and customer trainers. Using the input docu-
ments, brainstorm to determine each stakeholder’s critical qualitative
attributes. Ensure that the critical performance attributes are identi-
fied on your requirements’ list. Interview the stakeholders to get

Performance 125

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

feedback and confirmation about your specification. Add to the list of
requirements or modify them as necessary.

P6: For each identified performance requirement, specify it in detail
using the rules that apply (Rules.GS, Rules.RS, Rules.SR and
Rules.SD). Ensure each performance attribute is measurable in practice.

P7: Consider which performance requirements are key, and must there-
fore be controlled. Identify the most important ‘top ten’ performance
requirements. Group the others as ‘Diverse’ or ‘Less Critical’ if you like.

P8: Perform Specification Quality Control (SQC) on the performance
requirements. Correct any identified defects, and calculate the remaining
major defects/page (a page being 300 words of non-commentary text).
Check against the rules: {Rules.GS, Rules.RS, Rules.SR and Rules.SD}.

Exit Conditions

X1: The Generic Exit Conditions apply. The maximum possibly
remaining major defects/page must be less than one.

X2: The Requirement Specification Owner (usually specified as
‘Owner: <name, e-mail address or department>.’) agrees to release
the performance requirement specification with their name on it.
They have veto on release.

4.6 Principles: Performance Requirements

1. The Principle of ‘Bad numbers beat good words’
Poor quantification is more useful than no quantification; at least it
can be improved systematically.

2. The Principle of ‘Performance quantification’
All performance attributes can be expressed quantitatively,
‘qualitative’ does not mean unquantifiable.

3. The Principle of ‘Threats are measurable’
If the lack of a performance attribute can destroy your project, then
you can measure it sometime; the only issue will be ‘‘how early?’’

4. The Principle of ‘Put up or shut up’
There is no point in demanding a performance requirement, if you
cannot pay or wait for it.

5. The Principle of ‘Deadline or die’
There is no point in demanding a performance requirement, if you
would always give priority to something else, for example, a deadline.

126 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

6. The Principle of ‘Dream, but don’t hold your breath’
There is no point in demanding a performance requirement, if it
is outside the state of your art.

7. The Principle of ‘Benchmarks and targets’
Numeric past ‘history’ levels and numeric future requirement
levels together complete the performance requirement definition
of relative terms like ‘improved’.

8. The Principle of ‘Scalar priority’
In practice, the first priority will be survival,
The second priority will be avoiding failure,
The third priority will be success,
And the required levels for all of these will be constantly changing.

9. The Principle of ‘Many-splendored things’
Most performance ideas are usefully described by several measures
of goodness.

10. The Principle of ‘Limits to detail’
There is a practical limit to the number of facets of performance
you can define and control.
It is far less than the number of facets that you can imagine might
be relevant. (Try a limit of just the Top Ten!)

4.7 Additional Ideas: Performance Requirements

Handling Complex Performance Requirements

Many performance requirements, like the quality requirement, ‘Usabil-
ity’, can be expressed in greater detail using sub-requirements (such as
Learning Time, Error Rate andMinimum Skills Entry Level). There are
many possible interpretations, and they all have some use or validity.We
call such decomposable ideas ‘complex requirements’. It would be easy
to think, ‘‘there is no measure to cover such a complex requirement.’’
Our attitude is pragmatic and says, ‘‘Wewill define a reasonable number
of the sub-requirements quantitatively, and use them to define what we
mean.’’ We only need to identify sufficient sub-requirements to capture
the meaning of the performance attribute in the current system context.

The Planguage structure for a hierarchy is as follows:

Tag:

Sub-Tag 1: Scale: <some scale>. <Other parameters as needed>,

Sub-Tag 2: Scale: <some other scale>. <Other parameters as
needed>, . . .

Performance 127

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

Sub-Tag n: Scale: <yet another scale definition>. <Other parameters
as needed>.

For example, the first step of the practical example given in Section 4.2
is primarily discussing this idea of expanding a complex quality
requirement, ‘Serviceability’, into a number of elementary and
complex quality requirements (‘Repair’, ‘Enhancement’, ‘Fashion
Changes’, ‘Installation’ and ‘Reconfiguration’).

Here are some known ‘classic’ decomposition examples in the form of
a {descriptive tag set}:

EXAMPLE Performance: {Quality: {Availability {Reliability, Maintainability, Integrity}, Adapt-
ability, Usability}, Resource Saving, Work Capacity: Storage Capacity}.

EXAMPLE Maintainability: {Problem Recognition, Administrative Delay, Tool Collection,
Problem Analysis, Change Specification, Quality Control, Modification Implemen-
tation, Modification Testing, Recovery}.

EXAMPLE Usability: {Entry Level Experience, Training Requirements, Handling Ability, Like-
ability, Demonstrability}.

(See also the next chapter, especially Section 5.7.)

Limit the Amount of Detail

Expanding complex performance requirements into a number of sub-
requirements (and the subsequent need to further expand any sub-
requirements that are also themselves complex requirements) usually
leads to a great deal of detailed information when specification of the
parameters is carried out.

Make sure you focus on the critical (key-influence) performance
attributes. Tracking the top ten attributes is usually more than suffi-
cient to make a start. Remember, if you are using evolutionary
delivery, you can always decide to modify which attributes you are
monitoring over time.

Setting Scalar Levels

Implicit Assumptions Supporting a Scalar Parameter Level

When you set a scalar level, there are certain implicit supporting
assumptions, which apply. For example, when you specify a Goal
level, you are very unlikely to mean ‘this level and only this level.’
You actually are specifying that a stakeholder wants ‘this level or
better.’ Of course, all the other simultaneously specified targets and

128 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

Tag
Gist
Ambition
Scale

System Requirements

Stretch
Goal

Wish

Fail

Survival

Targets

Constraints

Quality Requirements
Objectives such as ‘Usability’

Performance Requirements
(Objectives)

Quality Objective Hierarchy
(for Complex Objectives)
Many Levels and Branches of

Hierarchy Possible
Such as ‘Ease of Entering Data’

Quality Requirement (Elementary Level)
such as ‘Errors introduced by defined [System User]’

Such as “Less than 4 Errors
per 100 Transactions by

<Trained User>”

Survival Levels

Failure Levels

Supporting Information:

Benchmarks
Past
Record
Trend

Other Requirement Types:
Function
Budget
Design Constraint
Condition Constraint

Other Performance Requirements:
Workload Capacity Requirement
Resource Saving Requirement.

Note: These will have the same structure
as a Quality Requirement.

Figure 4.7
Requirement specification hierarchy for a quality requirement.

Performance 129

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

Table 4.2 A teaching example supplied by Erik Simmons, Intel. The data is not real! Note the
explicit direction specified for the Fail levels.

Attribute Parameter

Fail Goal Stretch

Performance
Power (watts) >10W 5W 3–4W
Product Cost (each unit) >$21.85 $21.60 $21.50
MTTF (hrs) <10,000 20,000 25,000
Battery (hrs) <8 12 16
Weight (lbs) >5 3 2
Display (diagonal in
inches)

<7 8 9

Resource
Ship Date >March Next Year January Next Year November This Year
Effort (hrs) >25,000 23,000 22,000
Peak Headcount >15 12 10

Function

Survival

Survival
Fail

Budget
Stretch

Wish

Resource Performance

Planned Success Range or
‘Landing Zone’

Arrows mark the
direction of ‘better’
from the system viewpoint

Wish
Survival

Fail
Goal

Stretch

Survival

Figure 4.8
Implicit direction for ‘better’ along a Scale.

130 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

constraints that apply under the same set of conditions have to be
taken into account as well: the stakeholder wants all these requirements
at the same time. By specifying the Goal level, the stakeholder is
providing the information about what they consider the minimum
performance level for success in the light of the other requirements.

Exactly what ‘or better’ means in numeric terms depends on your Scale
definition. A stakeholder wants more performance and to use less
resource (see Figure 4.8). However, the Scale finally dictates the ‘direc-
tion’ of the numeric value and, therefore, the numeric interpretation of
‘better.’ For example, ‘better’ performance can mean a reduction in the
time taken to carry out a task – a numeric level would therefore be
expected to reduce over time as performance improved along the Scale.

4.8 Further Example/Case Study: Performance
Specification for a Water Supply

Here is a real example of specifying Norwegian Church Aid’s performance
requirements (objectives) for improving the water supply in Eritrea.

Function: SupplyingWater [Eritrea]<- NorwegianChurchAid (NCA).

0

20

40
60

80

100
Utilization A

Line Balancing

Utilization B

Line Utilization

Response TimeSynchronization

Assessment

Team Motivation

Solution Accuracy

Stretch
Goal
Past

Figure 4.9
A real case study diagram (slightly modified to preserve anonymity) showing a net of
multidimensional performance scales of measure. It shows a snapshot of a system at a
specific time. The areas show the Past [At Current Time], the gap from Past to the Goal
targets, and the gap from the Goal targets to the Stretch targets. This is a powerful
graphical way of displaying scalar data.
Note: Resources are not shown and the Performance scalar arrows are spread through
360 degrees.

Performance 131

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

We began by capturing the immediate objectives:

EXAMPLE Operation and Maintenance
Local Control:
Ambition: Strengthen conditions for local management of Operation and
Maintenance.
Scale: % of Water Supply Pumps which<function>more than 23 hours out of each
24-hour period.
Meter: A <status report> from the Local Water Committees every quarter year.
Past [Eritrea, Four Years Ago]: 65# 5% <- Survey conducted by NCA’s health
co-ordinator.
Goal [Eritrea, By End of this Year]: 80%,
[Eritrea, By End of Next Year]: 90%<- NCA Planning Committee [May Last Year].
Pump Availability:
Ambition: No single Water Supply Pump shall be <out of order> for <a long
period of time>.
Scale: % of year Water Supply Pumps <function>.
Meter: Faults reported by the Local Water Committees and the Water Supply Projects.
Past [Eritrea, Four Years Ago]: 60# 40% <- ?
Goal [Eritrea, By End of This Year]: 90# 10% <- ?,
[Eritrea, By End of Next Year]: 95# 5%.

Water Supply Efforts
Well Rehabilitation:
Ambition: Rehabilitation of earlier water supply projects and efforts.
Scale: Number of Water Supply Pumps put into operation anew each year, which
satisfy the <minimum need>.
Meter: Reports by Local Water Committees every quarter year.
Past [Eritrea, Four Years Ago]: 30# 5%. ‘‘of a total of 300.’’
Goal [Eritrea, By End of This Year]: 40# 5% <- ?,
[Eritrea, By End of Next Year]: 35# 5%.
New Wells:
Ambition: Make newly drilled wells when other alternatives are not feasible.
Assumptions: {1. New Wells are only to be drilled when other alternatives are
impossible. 2. Institutional responsibility and participation from the local village
shall be defined and accepted in advance.} <- NCA Policy.
Scale: Number of New Wells completed by agreed dates and according to the
Contract between the Drilling Team and the Employer.
Meter: Reports by Local Water Committees every quarter year.
Past [Eritrea, Seven Years Ago]: 66,
[Eritrea, Six Years Ago]: 17.

Goal [Eritrea, By End of This Year]: 10,
[Eritrea, By End of Next Year]: 9.

Alternative Sources:
Gist: Alternatives to drilled wells will be developed whenever the situation
permits it.
Scale: Number of efforts per year, which result in <alternative water supplies>.
Meter: Reports by Local Water Committees, Aid Partners or Aid Projects every
quarter year.
Past [Eritrea, Five Years Ago]: 20,
[Eritrea, Four Years Ago]: 19.

Goal [Eritrea, By End of This Year]: 30,
[Eritrea, By End of Four Years]: 46.

132 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

Once we had captured these objectives, we were pleased that we had a
clear statement of the requirements that could easily be used for planning
purposes and could readily be monitored. However, we soon realized
that these goals were not directly specifying people’s needs; for example,
improvement in health, clean water and ease of getting the water to
where it should go. Suggestions were consequently made for improved
goal setting with a series of new scales. For example, ‘average time to pick
up the water’ and ‘% of people that die/get sick due to unclean water.’

The major result of the specification was the recognition that the high-
level aims of the water projects needed better definition, and that the
water projects needed to be seen in that light.

4.9 Diagrams/Icons: Scalar Attribute
Requirements

Benchmarks

Targets

Constraints

Past – pointing backwards towards
the past

Trend – extrapolating into the future
based on past benchmark data

Record – a past state-of-the-art
worthy of noting

Goal – pointing forwards
Towards the future

Stretch – a challenging target
to try to attain

Wish – an unbudgeted
stakeholder dream

Fail – a level
indicating
pain or loss

Survival – lower limit
for System survival.
System demise
if not met

Survival – upper limit
for System survival.
System demise
if not met

Note: A Scale icon is drawn as a line with an arrowhead, connected to a function oval
symbol. Performance scales are to the right from the function oval (O→), and resource scales
are at the left of the oval with arrowhead connected to the oval (→O). The performance and
resource attribute icons must both include a function icon (an oval) to distinguish them from
each other. The arrow in a performance attribute points away from the function oval. For a
resource attribute, the arrow points towards the function oval.

Figure 4.10
Three graphical performance attributes showing the icons for scalar performance attri-
bute levels: three analytical benchmarks, three future requirement targets and two future
requirement constraints, respectively. Usually an attribute would have a mix of whatever
benchmark, target and constraint levels were relevant.

Performance 133

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

Function

Past
[Last Year]

Performance
benchmark
level

Performance
Attribute

Scale of Measure

[

Fail
[This Year] Goal

[Next Year]
Goal
[This Year]

Performance
target levels

Survival
[This Year]

Performance
constraint levels

Figure 4.11
Example of using some of the scalar icons: two performance target levels and two con-
straint levels compared to one benchmark level.

Table 4.3 Icons for scalar attribute requirements.

Planguage Term Icon
Attribute Definition

Gist S
Ambition @.S
Scale -|-|-
Meter -|?|-

Targets
Goal or Budget >
Stretch >þ
Wish >?

Constraints
Fail !
Survival []

System Space Conditions
Time, Place and Event [qualifier conditions]

Supporting Information
Source <-
Comment ‘‘text.’’

Benchmarks
Past <
Record <<
Trend ?<

134 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

Elementary scalar requirement template <with hints>

Tag: <Tag name of the elementary scalar requirement>.

Type:
<{Performance Requirement: {Quality Requirement,

Resource Saving Requirement,
Workload Capacity Requirement},

Resource Requirement: {Financial Requirement,
Time Requirement,
Headcount Requirement,
others}}>.

============================ Basic Information ===========================
Version: <Date or other version number>.
Status: <{Draft, SQC Exited, Approved, Rejected}>.
Quality Level: <Maximum remaining major defects/page, sample size, date>.
Owner: <Role/e-mail/name of the person responsible for this specification>.

Stakeholders: <Name any stakeholders with an interest in this specification>.

Gist: <Brief description, capturing the essential meaning of the requirement>.
Description: <Optional, full description of the requirement>.
Ambition: <Summarize the ambition level of only the targets below. Give the overall real
ambition level in 5–20 words>.

============================ Scale of Measure ===========================
Scale: <Scale of measure for the requirement (States the units of measure for all the targets,
constraints and benchmarks) and the scale qualifiers>.

============================= Measurement ============================
Meter: <The method to be used to obtain measurements on the defined Scale>.

============= Benchmarks ============= ‘‘Past Numeric Values’’ =============
Past [<when, where, if>]: <Past or current level. State if it is an estimate> <- <Source>.
Record [<when, where, if>]: <State-of-the-art level> <- <Source>.
Trend [<when, where, if>]: <Prediction of rate of change or future state-of-the-art level> <-
<Source>.

============== Targets ============== ‘‘Future Numeric Values’’ =============
Goal/Budget [<when, where, if>]: <Planned target level> <- <Source>.
Stretch [<when, where, if>]: <Motivating ambition level> <- <Source>.
Wish [<when, where, if>]: <Dream level (unbudgeted)> <- <Source>.

============== Constraints ============= ‘‘Specific Restrictions’’ =============
Fail [<when, where, if>]: <Failure level> <- <Source>.
Survival [<when, where, if>]: <Survival level> <- <Source>.

============================= Relationships =============================
Is Part Of: <Refer to the tags of any supra-requirements (complex requirements) that this
requirement is part of. A hierarchy of tags (For example, A.B.C) is preferable>.
Is Impacted By: <Refer to the tags of any design ideas that impact this requirement> <-
<Source>.
Impacts:<Name any requirements or designs or plans that are impacted significantly by this>.

======================= Priority and Risk Management ======================
Rationale: <Justify why this requirement exists>.
Value: <Name [stakeholder, time, place, event]: Quantify, or express in words, the value
claimed as a result of delivering the requirement>.
Assumptions:<State any assumptionsmade in connectionwith this requirement><-<Source>.
Dependencies: <State anything that achieving the planned requirement level is dependent
on> <- <Source>.
Risks:<List or refer to tags of anything that could cause delay or negative impact> <-<Source>.
Priority: <List the tags of any system elements that must be implemented before or after this
requirement>.
Issues: <State any known issues>.

Figure 4.12
A scalar requirement template with hints.

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH004.3D – 109 – [109–136/28] 29.6.2005
1:44PM

4.10 Summary: Performance Requirements

The basic initial step to get control over the primary ‘drivers’ for plans
and resulting projects is to have a clear specification of what we want.

Consider:

. Performance requirements are often ‘hidden’ in undefined require-
ment terms, such as ‘increased adaptability’.

. Performance requirements may be hidden in designs and plans that
have been inadvertently specified amongst the requirements. For
example ‘Flexible Contracts’ is a design idea seeming to imply that
there is some (undefined) form of ‘flexibility’ required, but what is
it?

. Performance requirements need to be numeric and to be qualified by
conditions, so we can specify exactly what stakeholders want and the
[time, place and event] conditions that we must meet.

. Performance requirements must be specified in such a way that they
are testable.

. Performance levels are variable; they change from project to project
and vary within a project over time, place and events.

Performance requirements are the key statements of expected and
necessary critical stakeholder benefits for a project. Performance
requirements are the main reason why projects are funded at all. So
it is critical that they are done well and managed well.

136 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH005.3D – 137 – [137–164/28] 29.6.2005
12:39PM

Chapter

5

SCALES OF MEASURE
How to Quantify

GLOSSARY CONCEPTS

Scale
Meter

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH005.3D – 137 – [137–164/28] 29.6.2005
12:39PM

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH005.3D – 137 – [137–164/28] 29.6.2005
12:39PM

5.1 Introduction

Scales of measure are fundamental to Planguage. They are central to
the definition of all scalar attributes, that is, to all the performance and
resource attributes.

You should learn the art of developing your own tailored scales of
measure for the performance and resource attributes, which are
important to your organization or system. You cannot rely on being
‘given the answer’ about how to quantify. You would soon lose
control over your current vital concerns if you waited for that!

Finding and Developing Scales of Measure and
Meters

The basic advice for identifying and developing scales of measure and
meters (practical methods for measuring) for scalar attributes is as follows:

1. Try to ‘reuse’ previously defined Scales and Meters. See Figure 5.3,
Examples of Scales of Measure.

2. Try to ‘modify’ previously defined Scales and Meters.
3. If no existing Scale or Meter can be reused or modified, use common

sense to develop innovative home-grown quantification ideas.
4. Whatever Scale or Meter you start off with, you must be prepared

to learn. Obtain and use early feedback, from colleagues and from
field tests, to redefine and improve your Scales and Meters.

See also Section 5.5, ‘Process Description: Scale Definition.’

Reference Library for Scales of Measure

‘Reuse’ is an important concept for sharing experience and saving time
when developing Scales. You need to build reference libraries of your
‘standard’ scales of measure. Remember to maintain details support-
ing each standard Scale, such as Source, Owner, Status and Version
(Date). If the name of a Scale’s designer is also kept, you can probably
contact them for assistance and ideas.

EXAMPLE Tag: <Assign a tag to this Scale>.
Type: Scale.
Version: <Date of the latest version or change>.
Owner: <Role/email of person responsible for updates/changes>.
Status: <Draft, SQC Exited, Approved>.
Scale: <Specify the Scale with defined [qualifiers]>.
Alternative Scales: <Reference by tag or define other Scales of interest as alternatives
and supplements>.

Scales of Measure 139

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH005.3D – 137 – [137–164/28] 29.6.2005
12:39PM

Embedded Scale Qualifiers: <Define the scale parameters, list options>.
Meter Options: <Suggest Meter(s) appropriate to the Scale>.
Known Usage: <Reference projects & specifications where this Scale was actually
used in practice with designers’ names>.
Known Problems: <List known or perceived problems with this Scale>.
Limitations: <List known or perceived limitations with this Scale>.
This is a draft template with hints for specification of scales of measure in a reference
library.

Reference Library for Meters

Another important standards library to maintain is a library of
‘Meters.’ Meters (as discussed in Chapter 4) support scales of measure
by providing practical methods for actually measuring the numeric
Scale values. ‘Off the shelf’ Meters from standards’ reference libraries
can save considerable amounts of time and effort; they are already
developed and are ‘tried and tested’ in the field.

It is natural to reference suggested Meters within definitions of specific
scales of measure (as in the template above). Scales and Meters belong
intimately together.

EXAMPLE Tag: Ease of Access.
Type: Scale.
Version: <version date>.
Owner: Rating Model Project (Bill).
Scale: Speed for a defined [Employee Type] with defined [Experience] to get a
defined [Client Type] operating successfully from the moment of a decision to use
the application.
Alternative Scales: None known yet.
Embedded Scale Qualifiers:
Employee Type: {Credit Analyst, Investment Banker, . . . }.
Experience: {Never, Occasional, Frequent, Recent}.
Client Type: {Major, Frequent, Minor, Infrequent}.

Meter Options:
Test all frequent combinations of parameters at least twice. Measure speed for the

combinations.
Known Usage: Rating Model Project.
Known Problems: None recorded yet.
Limitations: None recorded yet.
Example of a ‘Scale’ specification for a reference library.

Managing ‘What’ You Measure

It is a well-known paradigm that you can manage what you can measure.
If you want to achieve something in practice, then quantification, and
later measurement, are essential first steps for making sure you get it. If

140 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH005.3D – 137 – [137–164/28] 29.6.2005
12:39PM

you do not make it measurable, then it is likely to be less motivating for
people to findways to deliver it (they have no clear targets to work towards
and there are not such precise criteria for judgment of failure or success).

5.2 Practical Example: Scale Definition

‘User-friendly’ is a popular term. Can you specify a scale of measure
for it?

Here is my advice on how to tackle developing a definition for this.

If we assume there is no ‘off-the-shelf’ definition that could be used:

1. Be more specific about the various aspects of the quality ‘user-
friendly’ that are to be tackled. There are many, but decide on about
5 to 15 in practice that are key to your environment. For this
example, let’s select ‘environmentally friendly’ as the one of many
aspects that we are interested in, and we shall work on this below as
an example. (There are many other elementary aspects of the comp-
lex requirement, ‘User Friendly’, which we could also have chosen.)

2. Invent and specify a Tag: ‘Environmentally Friendly’ is sufficiently
descriptive. Ideally, it could be shorter, but it is very descriptive left as it is.

On Quantification

. No matter how complex the situation, good systems engineering
involves putting value measurements on the important parameters of
desired goals and performance of pertinent data, and of the specifica-
tions of the people and equipment and other components of the system.

. It is not easy to do this and so, very often, we are inclined to assume that
it is not possible to do it to advantage.

. But skilled systems engineers can change evaluations and comparisons
of alternative approaches from purely speculative to highly meaningful.

. If some critical aspect is not known, the systems experts seek to make it
known. They go dig up the facts.

. If doing so is very tough, such as setting down the public’s degree of
acceptance among various candidate solutions, then perhaps the public
can be polled.

. If that is not practical for the specific issue, then at least an attempt can be
made to judge the impact of beingwrong in assuming the public preference.

. Everything that is clear is used with clarity: what is not clear is used with
clarity as to the estimates and assumptions made, with the possible
negative consequences of the assumptions weighed and integrated.

. We do not have to work in the dark, now that we have professional
systems analysis.

Simon Ramo

Figure 5.1
A quote by Simon Ramo of TRW (Ramo and St. Clair 1998 Page 81).

Scales of Measure 141

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH005.3D – 137 – [137–164/28] 29.6.2005
12:39PM

EXAMPLE Tag: Environmentally Friendly.

Note, we usually don’t explicitly specify ‘Tag:’.

3. Check there is an Ambition statement, which briefly describes the
level of requirement ambition.

EXAMPLE Ambition: A highdegree of protection, compared to competitors, over the short-term and
the long-term, in near and remote environments for health and safety of living things.

4. Ensure there is general agreement by all the involved parties with
the Ambition. If not, ask for suggestions for modifications or
additions to it. Here is a simple improvement to my initial Ambi-
tion statement. It actually introduces a ‘constraint’.

EXAMPLE Ambition: A high degree of protection, compared to competitors, over the short term
and the long term, in near and remote environments for health and safety of living
things, which does not reduce the protection already present in nature.

5. Using the Ambition description, define an initial Scale that is
somehow measurable. Think about what will be perceived by the
stakeholders if the level of quality changes. What would be a visible
effect if the quality improved? My initial unfinished attempt at
finding a suitable Scale captured the ideas of change occurring and
of things getting better or worse:

EXAMPLE Scale: The% change in positive (good environment) or negative directions for defined . . .

However, I was not happy with it, so I made a second attempt. I
refined the Scale by expanding it to include the ideas of specific
things being effected in specific places over given times:

EXAMPLE Scale: % destruction or reduction of defined [Thing] in defined [Place] during a
defined [Time Period].

This felt better. In practice, I have added [qualifiers] into the Scale,
to indicate the variables that must be defined by specific things,
places and time periods whenever the Scale is used.

6. Determine if the term needs to be defined with several scales of
measure, or whether one like this, with general parameters, will do.
Has the Ambition been adequately captured? To determine what’s
best, you should list some of the possible sub-components of the term
(that is, what can it be broken down into, in detail?). For example:

EXAMPLE Thing: {Air, Water, Plant, Animal}.
Place: {Personal, Home, Community, Planet}.
Alternatively,
Thing:¼ {Air, Water, Plant, Animal}.
Place: Consists of {Personal, Home, Community, Planet}.

142 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH005.3D – 137 – [137–164/28] 29.6.2005
12:39PM

The first example means: ‘Thing’ is defined as the set of things Air,
Water, Plant and Animal (which since they are capitalized are
themselves defined elsewhere). Instead of just the colon after the tag,
the more explicit Planguage parameter ‘Consists Of’ or ‘¼’ can be used
to make this notation more immediately intelligible to novices in
reading Planguage.

Then consider whether the Scale enables the performance levels for
these sub-components to be expressed. You may have overlooked an
opportunity andmay want to add one ormore qualifiers to that Scale.
For example, we could potentially add the scale qualifier ‘ . . . under
defined [Environmental Conditions] in defined [Countries] . . . ’ to
make the scale definition even more explicit and more general.

Scale qualifiers (like . . . ‘defined [Place]’ . . .) have the following
advantages:

. they add clarity to the specifications

. they make the Scales themselves more reusable in other projects

. they make the Scale more useful in this project: specific bench-
marks, constraints and targets can be made for any interesting
combination of scale variables (such as, ‘Thing¼Air’).

7. Start working on a Meter (remember, you should first check there is
not a standard or company reference library Meter that you could
use). Try to imagine a practical way to measure things along the Scale,
or at least sketch one out. My example is only an initial rough sketch.

EXAMPLE Meter: {scientific data where available, opinion surveys, admitted intuitive guesses}.

The Meter will help confirm your choice of Scale as it will provide
evidence that practical measurements can feasibly be obtained
using the Scale.

8. Now try out the Scale. Define some reference points from the past
(benchmarks) and some future requirements (targets and constraints).

EXAMPLE Environmentally Friendly:
Ambition: A high degree of protection, compared to competitors, over the short-
term and the long-term, in near and remote environments for health and safety of
living things, which does not reduce the protection already present in nature.
Scale: % destruction or reduction of defined [Thing] in defined [Place] during a
defined [Time Period].
========================== Benchmarks ==========================
Past [Time Period¼Next Two Years, Place¼ Local House, Thing¼Water]: 20%
<- intuitive guess.
Record [Last Year, Cabin Well, Thing¼Water]: 0% <- declared reference point.
Trend [Ten to Twenty Years From Now, Local, Thing¼Water]: 30% <- intuitive.
‘‘Things seem to be getting worse.’’

Scales of Measure 143

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH005.3D – 137 – [137–164/28] 29.6.2005
12:39PM

=========================== Constraints ==========================
Fail [End Next Year, Thing¼Water, Place¼Eritrea]: 0%. ‘‘Not get worse.’’
============================= Targets ============================
Wish [Thing¼Water, Time¼Next Decade, Place¼Africa]: þ20% <- Pan African
Council Policy.
Goal [Time¼After Five Years, Place¼<our local community>, Thing¼Water]:< 5%.

Not very impressive, maybe I had better find another, more
specific, scale of measure? Maybe use a set of Scales?

Here is an example of a more-specific Scale:

EXAMPLE Scale: % change in water pollution degree as defined by UN Standard 1026.

Here is an example of some alternative and more-specific set of
Scales for the ‘Environmentally Friendly’ example:

EXAMPLE Environmentally Friendly:
Ambition: A high degree of protection, compared to competitors, over the short-
term and the long-term, in near and remote environments for health and safety of
living things, which does not reduce the protection already present in nature.
Air: Scale: % of days annually when <air> is <fit for all humans to breath>.
Water: Scale: % change in water pollution degree as defined by UN Standard 1026.
Earth: Scale: Grams per kilo of toxic content.
Predators: Scale: Average number of<free-roaming predators> per square km, per day.
Animals: Scale: % reduction of any defined [Living Creature] who has a defined
[Area] as their natural habitat.

‘Environmentally Friendly’ is now defined as a complex attri-
bute, because it consists of a number of elementary attributes:
{Air, Water, Earth, Predators, Animals}. A different scale of
measure defines each of these elementary attributes. Using these
Scales we can add Meters, benchmarks, constraints and target
levels to describe exactly how Environmentally Friendly we want
to be.

Level of Specification Detail

Howmuch detail you need to specify, depends on what you want control
over and howmuch effort it is worth. The basic paradigm of Planguage is
you should only elect to do what pays off for you. You should not build a
more detailed specification than is meaningful in terms of your project
and economic environment. Planguage tries to give you sufficient power
of articulation to control both complex and simple problems. You need
to scale up, or down, as appropriate. This is done through common
sense, intuition, experience and organizational standards (reflecting

144 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH005.3D – 137 – [137–164/28] 29.6.2005
12:39PM

experience). But, if in doubt, go into more detail. History says we have
tended in the past to specify too little detail about requirements. The
result consequently has often been to lose control, which costs a lot more
than the extra investment in requirement specification.

5.3 Language Core: Scale Definition

This section builds on the specification ideas presented in Chapter 4.
It discusses the specification of Scales with qualifiers.

Specifying Scales

The Central Role of a Scale within Scalar Attribute Definition

A scale of measure (Scale) is the heart of a scalar specification and
essential to support all the targets, constraints and benchmarks. The
specified Scale of an elementary scalar attribute is used (reused!) within
all the scalar parameter specifications of the attribute (that is, within
all the Goal, Budget, Stretch, Wish, Fail, Survival, Past, Record and
Trend parameters).

Each time a scalar parameter is specified, the Scale dictates what has
to be defined. And then, later, each time a scalar parameter

Love’s Many Attributes

• Trust
 - Truthfulness
 - Broken Appointments
 - Late Appointments
 - Gossiping to Others
• Respect
• Friendship
• Sharing
• Attention
• Understanding

• Support
• Care
• Comfort
• Kissed-ness
• Sex
• Passion
• other attributes?

Love.Trust.Truthfulness:
Ambition: No Lies.
Scale: Average Black Lies/Month.
Meter: Confidential Log of Lies.
Past Lies: Past [Ex-Spouse, Two Years Ago]: 42.
Goal [Current Spouse, This Year]: (Past Lies)/2.

Black Lies: Defined As: Non-White Lies.

Figure 5.2
Love is a many-splendored thing! Another example of decomposing a complex subject into
its component attributes. This is fromaclassroomexercise,whichwas done in two stages. First,
we decomposed the complex concept, ‘Love’ into many aspects. Then we took one
attribute at random to see if a reasonable quantified specification could be achieved.

Scales of Measure 145

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH005.3D – 137 – [137–164/28] 29.6.2005
12:39PM

definition is read, the Scale ‘interprets’ its meaning. So the Scale is
truly central to the definition of any scalar parameter. Well-defined
scales of measure are well worth the small investment to define and
refine them.

Specifying Scales using Qualifiers

The scalar attributes (performance and resource) are best measured in
terms of defined conditions (for example, specific times and places). If we
fail to do this, they lose meaning. People wrongly guess other conditions
than you intend, and cannot relate their experiences and knowledge to
your numbers. If we don’t get more specific by using qualifiers, then
performance and resource continue to be vague concepts and there is
ambiguity (which times? which places? which events?).

Further, it is important that the set of different performance and
resource levels for different defined conditions are identified. It is
likely that the levels of the performance and resource requirements
will differ across the system depending on such things as time, loca-
tion, role and system component.

Decomposing complex performance and resource ideas, and find-
ing market-segmenting qualifiers for differing target levels, is a key
method of competing for business.

Embedded Qualifiers within a Scale: A Scale specification can set up
useful qualifiers by declaring embedded scale qualifiers, using the
format ‘defined [<qualifier>]’. It can also declare default qualifier
values that apply by default if not overridden, ‘defined [<qualifier>:
default: <User-defined Variable or numeric value>]’. For example,
[. . . default: Novice].

Additional Qualifiers: However, embedded scale qualifiers should
not stop you adding any other useful additional qualifiers later, as
needed, during specification. But, if you do find you are adding the
same type of parameters in almost all specifications, then you might
as well design the Scale to include those qualifiers. A Scale should
be built to ensure it forces the user to define the critical informa-
tion needed to understand and control a critical performance or
resource attribute.

Here is an example of how user-defined terms (that is, additional
qualifiers) can make a quality more specific. Note also, how a require-
ment can be made conditional upon an event. If the event is not true,
the requirement does not apply.

First, some basic definitions are required:

146 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH005.3D – 137 – [137–164/28] 29.6.2005
12:39PM

EXAMPLE Assumption A:
Basis [This Financial Year]: Norway is still not a full member of the European
Union.

EU Trade:
Source: Euro Union Report [EU Trade in Decade 2000–2009].

Positive Trade Balance:
State [Next Financial Year]: Norwegian Net Foreign Trade Balance has Positive
Total to Date.

Now we apply those definitions below:

EXAMPLE Quality A:
Type: Quality Requirement.
Scale: % of Goods Delivered, by <value>, which are Returned for Repair or
Replacement by Consumers.
Meter [Development]: Weekly samples of 10, [Acceptance]: 30 day sampling at 10%
of representative cases, [Maintenance]: Daily sample of largest cost case.
Fail [European Union, Assumption A]: 40% <- European Economic Members.
Goal [EU and EEU members, Positive Trade Balance]: 50% <- EU Trade.
The Fail and the Goal requirements are now defined partly with the help of qualifiers.
The Goal to achieve 50% (or more, is implied) is only a valid plan if ‘Positive Trade
Balance’ is true. The Fail level requirement of 40% (or worse, less, is implied) is only
valid if ‘Assumption A’ is true.

5.4 Rules: Scale Definition

Tag: Rules.SD.

Version: October 7, 2004.

Owner: TG.

Status: Draft.

Gist: Rules for Scale Definition.

Note: These rules are concerned with the use of scales of measure and also
specification of scalar parameters, including specification of numeric
values. They complement Rules.SR.

Base: These rules are to be used in addition to the rules for Scalar
Requirement Specification (Rules.SR).

R1: Standard: The Scale and/or Meter must, wherever possible,
be derived from a standard version (held in named files or referenced
sources) and the standard shall be source referenced in the specifica-
tion. For example, Scale: . . .<- Corporate Scale 1.2.

Scales of Measure 147

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH005.3D – 137 – [137–164/28] 29.6.2005
12:39PM

R2: Notify Owner: If a Scale or Meter is not standard, a notification
must be sent to the appropriate Library Owner to inform them about
the availability of this new case. ‘‘Note sent to <Library Owner>’’ will
be included as a specification comment to confirm this act.

R3: Scale Definition: Each scale definition in a specification is part of
an elementary attribute (that is, the associated elementary requirement
definition must have a unique tag, and appropriate set of parameters, such
as Past andGoal). The scale definitionmust define the units of measure so
that benchmarks, constraints and targets can be set clearly and consistently.

R4: Elementary Attribute: An elementary attribute must only have
one Scale.

R5: Differentiate: A distinction will be made, by using qualifiers,
between those system components which must have significantly
higher performance levels than others, and components which do
not require such levels. ‘‘The most ambitious level [across an entire
system] can cost too much.’’1

EXAMPLE Goal [Operating System Core]: 99.98%, [Online Internet Components]: 99.90%,
[Offline Components]: 99%.

R6: Uncertainty: Whenever there is known uncertainty in the precise
level for a specified numeric value, its upper and lower boundaries
should be explicitly stated. Expressions, such as {60# 20, 60 to 80,
60?, 60??}, can be used.

R7: Scalar Priority: No artificial ‘weights’. Use scalar priority. The
relative ‘static’ (initial) priority of a scalar requirement (its ‘claim on
limited resources) is initially given by means of the target and constraint
statements {Goal, Stretch and Wish, Fail and Survival levels} and, also
by the complementary information given by qualifiers, Source and
Authority statements. It is unnecessary and ‘corrupting’ to add any other
priority information (such as weights or relative priority).

The final real ‘dynamic’ priority of meeting a scalar requirement is a
matter for systematic engineering tradeoff later, when the total real
impacts and costs of design ideas are better understood during design
analysis or system development.

(Note: Function requirements can however state ‘simple priority’ directly.
They have no scalar mechanisms for determining priority based on
unfulfilled Goal attainment. See Rules.FR:R5: Function Priority.)

1 I once participated in ‘saving’ a German telecoms project, which had run about 3,000
work years over financial budget and two to three calendar years late, mainly as a result
of applying the highest quality levels across the entire system (in fact, only the core
software warranted such levels).

148 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH005.3D – 137 – [137–164/28] 29.6.2005
12:39PM

5.5 Process Description: Scale Definition

Process: Scale Definition

Tag: Process.SD.

Version: October 7, 2004.

Owner: TG.

Status: Draft.

Gist: Determining a Scale of Measure.

Note: The procedure steps cannot simply be done sequentially. Iteration is
needed to evolve realistic scales of measure.

Entry Conditions

E1: The Generic Entry Conditions apply. Input documentation
includes contracts, marketing plans, product plans and the

Table 5.1 Examples of Scales of Measure.

Performance Effect of Change in Performance Scale of Measure

Customer
Satisfaction

Fewer letters of complaint Number of letters complaining about a
defined [Product] received within a
defined [Time Period]

Customer
Satisfaction

Fewer returned goods Percentage of defined [Product] returned
within defined [Time Period after
Purchase] with defined [Customer Issue]

Environmentally
Friendly

Improved rating as measured
on international standard

Number of defined [Product Type] failing
defined [Test] within a defined [Time Period]

User-friendly Fewer errors made Percentage of defined [Transaction Type]
with defined [Error] input by defined
[User Type]

User-friendly Faster time for completion of
transactions

Time in minutes for a defined
[Transaction] to be carried out to
<satisfactory> completion

Restful
Ambience

Calming, relaxing effect Percentage of users of defined [User Type]
agreeing that defined [Room Space] was
<restful>

Reliability Fewer breakdowns Mean Time Between Repair (MTBR)

Staff Satisfaction Lower rate of staff turnover Number of staff of defined [Job
Description Response]

Predictability Less variance in time to initial
response

Percentage of service calls of defined
[Service Type] exceeding <initial
response> within defined [Time Period]

Scales of Measure 149

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH005.3D – 137 – [137–164/28] 29.6.2005
12:39PM

requirement specification. The relevant rules should also be available:
the generic specification rules (Rules.GS), the requirement specifica-
tion rules (Rules.RS), the rules for scalar requirement specification
(Rules.SR) and, the rules for scale definition (Rules.SD).

E2: Do not enter this procedure if company files or standards already
have adequate quantification devices. Preferably use the existing Scales
and Meters found in the standards’ libraries.

Procedure

P1: Ensure that you have derived an elementary attribute (from a complex
requirement), and that you are not trying to use a complex requirement,
which needs decomposition into its elementary attributes. (Trying to find
a single Scale for a complex (multi-Scale) requirement doesn’t work well. It is
usually the cause of trouble when people fail to find a suitable Scale.)

If you find you do indeed have a complex requirement, then decom-
pose it and try to find Scales for its components. You might well find
that further (second-level and more) decomposition is required!

P2: Ensure that the elementary attribute that you are developing a
Scale for has a suitable tag and a Gist or Ambition parameter that
adequately describes the concept in outline terms.

P3: Using the Gist or Ambition, analyze how a ‘change’ of degree in
the scalar attribute level would be expressed. What would a user
experience or perceive? For some examples, see Table 5.1, ‘Examples
of Scales of Measure’.

Sometimes you can keep things simple, and ‘make do’, by controlling the
details at a higher level of abstraction:

. by deciding to use one dominant Scale only, and consciously ignoring the
potential other scales.

. by aggregating several scales of measure to express one summary scale of
measure.

. by defining a complex attribute as the ‘set’ of other Scales and definitions.

P4: Specify the critical [time, place, event] qualifiers to express differ-
ent benchmarks, constraints and target levels.

P5: If there is no appropriate standard Meter (or test), start working
on a Meter. Try to imagine a practical way to measure things along the
Scale, or at least sketch one. Try thinking about any measures that are
currently being carried out (this could even help you start developing
ideas for scales of measure). Also, think about whether any current
system could be modified, or have its settings changed, to perform
additional measurement.

150 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH005.3D – 137 – [137–164/28] 29.6.2005
12:39PM

P6: Try out the Scale. Define some reference points from the past
(benchmarks) and then, on the basis of benchmarks, specify future
requirements (targets and constraints).

P7: Repeat this process until you are satisfied with the result. Try to
get approval for your Scale from some of the stakeholders. Does it
quantify what they really care about?

P8: Consider putting embedded parameters into the Scale definition.
Rationale: To enable a Scale to be reused both within a project and in
other projects.

EXAMPLE Scale: Time needed to do defined [Task] by defined [User] in defined [Environment].
Goal [Task¼Get Number, User¼<Novice>, Environment¼<Noisy>]: 10minutes.

P9: Once you have developed a useful Scale, ensure it is made avail-
able for others to use (on your intranet, or a web site, or in course
materials, or your ‘personal’ glossary of Scales2). Offer the Scale to the
owner of the ‘Scales’ library within your organization.

Exit Conditions

X1: The Generic Exit Conditions apply.

X2: Alternatively, consensus is obtained on trying out the Scale in
practice, and exit condition X1 is temporarily waived.

Rationale [X2, Tryout]: The intent being to gain experience, or to
obtain opinions concerning the quantification, so it can be refined
ready for <official use>.

5.6 Principles: Scale Definition

1. The Principle of ‘Defining a Scale of Measure’
If you can’t define a scale of measure, then the goal is out of
control.
Specifying any critical variable starts with defining its scale.

2. The Principle of ‘Quantification being Mandatory for Control’
If you can’t quantify it, you can’t control it.3

If you cannot put numbers on your critical system variables, then you
cannot expect to communicate about them, or to control them.

2 See http://www.Gilb.com/. It is easy to find examples of scales by searching the web,
for example, search for ‘Usability metrics’.
3 Paraphrasing a well-known old saying.

Scales of Measure 151

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH005.3D – 137 – [137–164/28] 29.6.2005
12:39PM

3. The Principle of ‘Scales should control the Stakeholder Require-
ments’
Don’t choose the easy Scale, choose the powerful Scale.
Select scales of measure that give you the most direct control over the critical
stakeholder requirements. Choose the Scales that lead to useful results.

4. The Principle of ‘Copycats Cumulate Wisdom’
Don’t reinvent Scales anew each time – store the wisdom of other
Scales for reuse.
Most scales of measure you will need will be found somewhere in the
literature or can be adapted from existing literature.

5. The Cartesian Principle
Divide and conquer said René – put complexity at bay.
Most high-level performance attributes need decomposition into the list of
sub-attributes that we are actually referring to. This makes it much easier
to define complex concepts, like ‘Usability’, or ‘Adaptability,’ measurably.

6. The Principle of ‘Quantification is not Measurement’
You don’t have to measure in order to quantify!
There is an essential distinction between quantification and measurement.
‘‘I want to take a trip to the moon in nine picoseconds’’ is a clear
requirement specification without measurement.’’
The well-known problems of measuring systems accurately are no
excuse for avoiding quantification. Quantification allows us to com-
municate about how good scalar attributes are or can be – before we
have any need to measure them in the new systems.

7. The Principle of ‘Meters Matter’
Measurement methods give real world feedback about our ideas.
A ‘Meter’ definition determines the quality and cost of measurement
on a scale; it needs to be sufficient for control and for our purse.

8. The Principle of ‘Horses for Courses’4

Different measuring processes will be necessary for different points
in time, different events, and different places.5

9. The Principle of ‘The Answer always being 42’6

Exact numbers are ambiguous unless the units of measure are well-
defined and agreed.
Formally defined scales of measure avoid ambiguity. If you don’t
define scales of measure well, the requirement level might just as well
be an arbitrary number.

4 ‘Horses for courses’ is a UK expression indicating something must be appropriate for
its use.
5 There is no universal static scale of measure. You need to tailor them tomake them useful.
6 The concept of the answer being 42 was made famous in Douglas Adams, The
Hitchhiker’s Guide to the Galaxy, Macmillan, 1979, ISBN 0-330-25864-8.

152 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH005.3D – 137 – [137–164/28] 29.6.2005
12:39PM

10. The Principle of ‘Being Sure About Results’
If you want to be sure of delivering the critical result – then
quantify the requirement.
Critical requirements can hurt you if they go wrong – and you can
always find a useful way to quantify the notion of ‘going right.’

5.7 Additional Ideas: Generic Hierarchies for
Scalar Attributes

You can decompose many scalar attributes into arbitrarily large or
small sets of more specific ‘elementary’ scalar attributes. The selection
of exactly which elementary attributes to define is a practical matter of
knowing your domain well enough to decide which of them will give
you best control over your critical success factors. At best we make
reasonable guesses with some effort to begin with. Then we learn some
hard lessons, usually about what we forgot to exercise control over.

Having said this, we have found that templates for performance and
resource/cost attributes are helpful to most people. So, we will give
some basic performance attributes in this section. Remember, in any
real system they will need to be used selectively: they will need to be
tailored to your local purpose. (See Figure 5.4 for an overview of these
attribute definitions.)

Note all these template ideas build upon the templates originally presented
in Gilb (1988 Chapter 19).

They are organized into multilevel hierarchies of attributes. This does
not imply that any one hierarchical organization is best or correct. But
they are useful. The essential idea is to get control over those elementary
attributes that determine your success or failure. A flat list of the right
ones works as well as any hierarchy. Hierarchies are mainly useful
groups for human convenience, but are not a reality for the system.

Hierarchy of Performance

Performance: ‘Useful values deliverable to stakeholders.’
Includes: {Quality, Resource Savings, Workload Capacity}.

1. Quality: ‘How well a system performs.’
Includes: {Availability, Adaptability, Usability, Other}.

1.1 Availability: ‘The readiness of a system to do its work.’
Gist: Availability is the measure of how much a system is
usefully (not merely technically) available to perform the work
that it was designed to do.

Scales of Measure 153

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH005.3D – 137 – [137–164/28] 29.6.2005
12:39PM

Availability: Type: Elementary Quality Requirement.
Scale: % of defined [Time Period] a defined [System] is avail-
able for its defined [Tasks].

Availability: Type: Complex Quality Requirement.
Includes: {Reliability, Maintainability, Integrity}.

1.1.1 Reliability: ‘A system performs as it is intended.’
Gist: Reliability is a measure of the degree to which a system
performs as it was designed to do, as opposed to doing
something else (like producing a wrong answer or providing

Performance

Quality

Availability

Reliability
Maintainability
Integrity

Threat
Security

Adaptability

Flexibility

Connectability

Tailorability

Extendibility
Interchangeability

Upgradeability

Installability
Portability
Improveability

Usability

Entry Level Experience

Training Requirement

Handling Ability
Likeability

Demonstratability

Resource Saving

Financial Saving

Time Saving
Effort Saving

Equipment Saving

Workload Capacity

Throughput
Response Time

Storage Capacity

Figure 5.3
One decomposition possibility for performance attributes with emphasis on the detail of
the quality attributes.

154 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH005.3D – 137 – [137–164/28] 29.6.2005
12:39PM

no answer). Definitions of Reliability will therefore vary
according to the definition of what the system is supposed
to do. In general, if a system is in an unreliable state then it
is ‘unavailable’ for its intended work tasks.

Scale: Mean time for a defined [System] to experience
defined [Failure Type] under defined [Conditions].

1.1.2 Maintainability: ‘Resource required to repair an unreli-
able system.’
Gist: Maintainability is a measure of how quickly an unreli-
able system can be brought to a reliable state. In general,
this covers not only the actual repair of the fault, but also
recovery from any effects of the fault and, quality control
and test of the repair.
Conventionally, maintenance is concerned with the pro-
cess of fault handling, rather than for improvement of a
faultless system. However, the difference between what is
a fault and what is a system improvement can be subjec-
tive! (See also later definition for ‘Adaptability’ .)

Maintainability: Type: Elementary Quality Requirement.
Scale: Mean time to carry out a defined [Type of Repair]
to a defined [System] using defined [Repair Method]
under defined [Conditions].

1.1.3 Integrity: ‘The ability of the system to survive attack.’
Gist: Integrity is a measure of the confidence that the
system has suffered no harm: its security has not been
breached and, its use has resulted in no ‘corruption’ or
impairment to it. An attack on the Integrity of a system
can be accidental or intentional. The Integrity of a system
depends on the frequency of threat to it and the effective-
ness of its security.

Integrity: Type: Elementary Quality Requirement.
Scale: Probability for a defined [System] to achieve
defined [Coping Action] with defined [Attack] under
defined [Conditions].
Coping Action: {detect, prevent, capture}.
Integrity: Type: Complex Quality Requirement.
Includes: {Threat, Security}.

1.2 Adaptability: ‘The efficiency with which a system can be changed.’
Gist: Adaptability is a measure of a system’s ability to change.
Since, if given sufficient resource, a system can be changed in
almost any way, the primary concern is with the amount of
resources (such as time, people, tools and finance) needed to bring
about specific changes (the ‘cost’).

Scales of Measure 155

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH005.3D – 137 – [137–164/28] 29.6.2005
12:39PM

Adaptability: Type: Elementary Quality Requirement.
Scale: Time needed to adapt a defined [System] from a defined
[Initial State] to another defined [Final State] using defined
[Means].

Adaptability: Type: Complex Quality Requirement.
Includes: {Flexibility, Upgradeability}.

Maintainability:
Type: Complex Quality Requirement.
Includes: {Problem Recognition, Administrative Delay, Tool Collection, Problem Analysis,
Change Specification, Quality Control, Modification Implementation, Modification Testing {Unit
Testing, Integration Testing, Beta Testing, System Testing}, Recovery}.

Problem Recognition:
Scale: Clock hours from defined [Fault Occurrence: Default: Bug occurs in any use or test of
system] until fault officially recognized by defined [Recognition Act: Default: Fault is logged
electronically].
Administrative Delay:
Scale: Clock hours from defined [Recognition Act] until defined [Correction Action] initiated and
assigned to a defined [Maintenance Instance].
Tool Collection:
Scale: Clock hours for defined [Maintenance Instance: Default: Whoever is assigned] to
acquire all defined [Tools: Default: all systems and information necessary to analyze, correct
and quality control the correction].
Problem Analysis:
Scale: Clock time for the assigned defined [Maintenance Instance] to analyze the fault symp-
toms and be able to begin to formulate a correction hypothesis.
Change Specification:
Scale: Clock hours needed by defined [Maintenance Instance] to fully and correctly describe
the necessary correction actions, according to current applicable standards for this.
Note: This includes any additional time for corrections after quality control and tests.
Quality Control:
Scale: Clock hours for quality control of the correction hypothesis (against relevant standards).
Modification Implementation:
Scale: Clock hours to carry out the correction activity as planned. ‘‘Includes any necessary
corrections as a result of quality control or testing.’’
Modification Testing:
Unit Testing:
Scale: Clock hours to carry out defined [Unit Test] for the fault correction.
Integration Testing:
Scale: Clock hours to carry out defined [Integration Test] for the fault correction.
Beta Testing:
Scale: Clock hours to carry out defined [Beta Test] for the fault correction before official
release of the correction is permitted.
System Testing:
Scale: Clock hours to carry out defined [System Test] for the fault correction.

Recovery:
Scale: Clock hours for defined [User Type] to return system to the state it was in prior to the
fault and, to a state ready to continue with work.

Source: The above is an extension of some basic ideas from Ireson, Editor, Reliability Hand-
book, McGraw Hill, 1966 (Ireson 1966).

Figure 5.4
A more detailed view of Maintainability.

156 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH005.3D – 137 – [137–164/28] 29.6.2005
12:39PM

1.2.1 Flexibility:
Gist: This concerns the ‘in-built’ ability of the system to adapt
or to be adapted by its users to suit conditions (without any
fundamental system modification by system development).
Type: Complex Quality Requirement.
Includes: {Connectability, Tailorability}.

1.2.1.1 Connectability: ‘The cost to interconnect the system to
its environment.’
Gist: The support in-built within the system to con-
nect to different interfaces.

1.2.1.2 Tailorability: ‘The cost to modify the system to suit its
conditions.’
Type: Complex Quality Requirement.
Includes: {Extendibility, Interchangeability}.

1.2.1.2.1 Extendibility:
Scale: The cost to add to a defined [System] a
defined [Extension Class] and defined [Extension
Quantity] using a defined [Extension Means].
‘‘In other words, add such things as a new user or
a new node.’’
Type: Complex Quality Requirement.
Includes: {Node Addability,

Connection Addability,
Application Addability,
Subscriber Addability}.

1.2.1.2.2 Interchangeability: ‘The cost to modify use of sys-
tem components.’
Gist: This is concerned with the ability to modify
the system to switch from using a certain set of
system components to using another set.
For example, this could be a daily occurrence
switching system mode from day to night use.

1.2.2 Upgradeability: ‘The cost to modify the system fundamen-
tally; either to install it or change out system components.’
Gist: This concerns the ability of the system to be
modified by the system developers or system support
in planned stages (as opposed to unplanned mainte-
nance or tailoring the system).
Type: Complex Quality Requirement.
Includes: {Installability, Portability, Improveability}.

1.2.2.1 Installability: ‘The cost to install in defined conditions.’
This concerns installing the system code and also,
installing it in new locations to extend the system

Scales of Measure 157

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH005.3D – 137 – [137–164/28] 29.6.2005
12:39PM

coverage. Could include conditions such as the instal-
lation being carried out by a customer or, by an IT
professional on-site.

1.2.2.2 Portability: ‘The cost to move from location to location.’
Scale: The cost to transport a defined [System] from a
defined [Initial Environment] to a defined [Target
Environment] using defined [Means].
Type: Complex Quality Requirement.
Includes: {Data Portability,

Logic Portability,
Command Portability,
Media Portability}.

1.2.2.3 Improveability: ‘The cost to enhance the system.’
Gist: The ability to replace system components with
others, which possesses improved (function, perfor-
mance, cost and/or design) attributes.
Scale: The cost to add to a defined [System] a defined
[Improvement] using a defined [Means].

1.3 Usability: ‘How easy a system is to use.’
Scale: Speed for defined [Users] to correctly accomplish
defined [Tasks] when given defined [Instruction] under defined
[Circumstances].
Note: This is a generic scale for Usability, which you can use if
you want to simplify matters and deal with Usability at an
elementary level. It is however more usually declared as ‘com-
plex’ and then defined in a more specific manner; for example,
by using the sub-attributes below. There are of course, many
different possible decompositions of Usability.
Type: Complex Quality Requirement.
Includes: {Entry Level Experience, Training Requirement,
Handling Ability, Likeability, Demonstratability}.

1.3.1 Entry Level Experience:
Scale: The defined [Level of Knowledge] required to
receive training or to use a defined [System].

1.3.2 Training Requirement:
Scale: The degree of training required for a defined [User
Type] to achieve a defined [Degree of Proficiency] with a
defined [System].

1.3.3 Handling Ability:
Scale: A defined [Degree of Proficiency] with a defined
[System] by a defined [Class of User].

158 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH005.3D – 137 – [137–164/28] 29.6.2005
12:39PM

1.3.4 Likeability:
Scale: The degree to which defined [Users] declare that they
are pleased with defined [Aspects] of a defined [System].

1.3.5 Demonstrability:
Type: Complex Quality Requirement.
Includes: Elementary Quality Requirement {Customer
Self-Demonstrability, Sales Demonstrability}.

Some Alternative Models for Usability:
The point of these three alternative models to the basic
Usability model (above) is to emphasize that there is NOT
one ‘correct model.’ All major projects need highly tailored
models. I also want to show some specific instances of Usabil-
ity sub-scales as a checklist or stimulant to readers when
building their own models.

EXAMPLE Usability:
Type: Complex Quality Requirement.
Includes: {Entry Level Experience, Training Requirement, Handling Ability, Like-
ability, Demonstrability}. ‘‘Only one of the many possible decompositions of
Usability.’’
Demonstrability:
Type: Complex Quality Requirement.
Includes: Type: Elementary Quality Requirement {Customer Self-Demonstrability}.
Customer Self-Demonstrability:
Ambition: Ability of Customer to solo self-demonstrate a Product is to be <high>.
Scale: Probability of <successful completion> of self-demonstration within one hour.
Past [Last Year, All Products]: < 5%.
Fail: 90% to 95% <- Corporate Quality Policy.
Goal: 95%.

EXAMPLE Usability:
Type: Complex Quality Requirement.
Device Swapability:
Scale: Minutes to swap over a defined [Input Device or Output Device].
Training Need: Scale: Hours in <training mode> until capable of defined
[Tasks].
User Productivity: Scale: % User Time lost due to Product Fault or <Bad Design>.
User Error Rate: Scale: % of User Actions, which they correct or change.
User Minimum Qualification Level:
Scale: Average % of correct answers to a defined [Qualifying Test] by a defined [User
Type].
Userlessness: Scale: % of Tasks, which can run <unattended>.
Coherence:
Scale: % of User Interface Elements, which are perceived as consistent with our
Product Image.

Scales of Measure 159

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH005.3D – 137 – [137–164/28] 29.6.2005
12:39PM

User Opinion:
Scale: % of defined [User Type] who express <positive feeling> after using defined
[Product Component(s)].
Customer Self-Demonstratability:
Scale:% Probability of successful<self demonstration> of defined [Product or Product
Component] by defined [User Type] within defined [Time Span] of attempt to use it.

EXAMPLE Usability:
Type: Complex Quality Requirement.
Includes: Type: Elementary Quality Requirement {Entry Conditions, Training
Requirement, Computer Familiarity, Web Experience Level, Productivity, Error
Rate, Likeability, Intuitiveness, Intelligibility}.
Entry Conditions:
Scale: <Grade Level of User>.
Training Requirement:
Scale: Time needed to read <any instructions> or get <any help> in order to
perform defined [Tasks] successfully.
Computer Familiarity:
Scale: Years of <experience with computers>.
Web Experience Level:
Scale: Years of <experience with using the web>.
Productivity:
Scale: Ability to correctly produce defined [Work Units: Default: Completed Trans-
actions].
Error Rate:
Scale: Number of Erroneous Transactions requiring correction each <session>.
Likeability:
Scale: Option of <pleasure> on using the system on scale of $10 to þ10.
Intuitiveness:
Scale: Probability that a defined [User] can intuitively figure out how to do a defined
[Task] correctly (without any errors needing correction).
Intelligibility:
Scale: Probability in % that a defined [User] will correctly interpret defined [Mes-
sages or Displays].

2. Resource Savings:
Gist: How much resource savings a new system produces compared to
some defined benchmark system.
Type: Complex Performance Requirement.
Includes: {Financial Saving, Time Saving, Effort Saving, Equipment
Saving}.

. Financial Saving: ‘‘Financial Cost Reduction’’
Scale: Net Financial Saving planned or achieved compared to a
defined [Benchmark Amount].

. Time Saving: ‘‘Processing Time Reduction, Elapse Time Reduc-
tion, Time To Market’’

160 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH005.3D – 137 – [137–164/28] 29.6.2005
12:39PM

Scale: Net Time Saving planned or achieved compared to a defined
[Benchmark Amount].

. Effort Saving: ‘‘Reduction in the Person-Hours required’’
Scale: Net Effort saving planned or achieved compared to a defined
[Benchmark Amount].

. Equipment Saving: ‘‘Includes room space!’’
Scale: Net Space saving planned or achieved compared to a defined
[Benchmark Amount].

3. Workload Capacity: ‘‘The raw ability of the system to perform
work.’’
Type: Complex Performance Requirement.
Includes: {Throughput, Response Time, Storage Capacity}.

. Throughput:
Gist: Throughput is a measure of the ability of the system to process
work. For example, the average number of telephone sales orders,
which can be dealt with by an experienced telephone sales operator,
in an hour.
Scale: The average quantity of defined [Work Units], which can be
successfully handled in a defined [Time Unit].

. Response Time: ‘‘Retrieval Timing, Transaction Timing’’
Scale: The mean average speed to perform a defined [Reaction] on
receiving a defined [Impulse].

. Storage Capacity: ‘‘The ability of the system to increase in size’’
Gist: This is the capability of a component part of the system to
store units of some defined kind. For example, number of registered
users, lines of code, photographs and boxes.
Scale: The capacity to store defined [Units] under defined [Condi-
tions].

5.8 Further Example/Case Study: Scale Definition

This is part of a quality definition done for the airborne com-
mand and control system, which was discussed previously in
Section 3.8. It is a first draft (there are lots of things to be refined
later) and it is only a sample of the requirement specification we
actually worked out. We chose to work on ‘Usability’ as it was
defined as ‘the key competitive system quality’. This system is now
operational.

Scales of Measure 161

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH005.3D – 137 – [137–164/28] 29.6.2005
12:39PM

EXAMPLE Usability:
Ambition: Operator ease of learning & doing tasks under <all conditions> should
be maximum possible ease & speed of performance with minimum training &
minimum possibility of <unchecked error(s)>.

Usability.Intuitiveness:
Ambition: High probability that an operator will within a specified time from
deciding the need to perform a specific task (without reference to handbooks or help
facility) find a way to accomplish their desired task.
Scale: Percentage Probability that a defined [Individual Person: Default: Trained
Operator] will find a way to perform a defined [Task Type] without reference to any
written instructions, other than the help or guidance instructions offered by the
immediate system screen (that is, no additional paper or on-line system reference
information), within a defined [Time Period: Default: Within one second from
deciding that it is necessary to perform the task].
Comment [Intuitiveness:Scale]: ‘‘I’m not sure if one second is acceptable or realistic,
it’s just a guess’’ <- MAB.
Meter: To be defined. Not crucial this 1st draft <- TG.
Past [System R]: 80%? <- LN.
Record [Mac User Interface]: 95%? <- TG.
Fail [Trained Operator, Rare Tasks [{<1/week, <1/year}]]: From 50% to 90%?
<- MAB.
Goal [Tasks Done [<1/week (but more than 1/Month)]]: 99%? <- LN,
[Tasks Done [<1/year]]: 20%? <- JB,
[Turbulence, Tasks Done [<1/year]]: 10% ? <- TG.

======================= User Defined Terms =======================
Trained Operator: Defined As: Command and Control Onboard Operator,
who has been through approved training course of at least 200 hours
duration.
Rare Tasks: Defined As: Types of tasks performed by an Onboard Operator less than
once a week on average.
Tasks Done: Defined As: Distinct tasks carried out by Onboard Operator.
===================== ==================== ====================
Usability.Intelligibility:
Ambition: High ability for an operator to <correctly> interpret the meaning of
given information.
Scale: Percentage Probability of <objectively correct> interpretation(s) of a defined
[Set of <Inputs>] by a defined [Individual Person: Default: Trained Operator]
within a defined [Time Period].
Meter [Acceptance]: Use about 10 Trained Operators, and use about 100
<representative sets of information per operator within 15 minutes?> - MAB.
Comment [Meter]: ‘‘Not sure if the 15 minutes are realistic’’ <- MAB.
Comment [Meter]: ‘‘This is a client & contract determined detail’’ <- MAB.
M1: Past: [XXX, 20 Trained Operators, 300 <data sets>, 30 minutes]: 99.0%
<- Acceptance Test Report from XXX, MAB.
Record [XXX]: 99.0%. ‘‘None other than XXX known by me’’ <- MAB.
Fail [First Delivery Step]: 99.0%? <- MAB.
Fail [Acceptance]: 99.5%? <- MAB.
Goal [XXX, 20 Trained Operators, 300 <data sets>, 30 minutes]: 99.9%
<- LN.

162 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH005.3D – 137 – [137–164/28] 29.6.2005
12:39PM

===================== More User Defined Terms ====================
Acceptance: Defined As: Formal Acceptance Test as defined by our contract with
Customer XXX.
First Delivery Step: Defined As: By end of November this year (The results of the
first evolutionary result cycle will be integrated into the system and will be producing
useful results).

5.9 Diagrams/Icons: Scale Definition

5.10 Summary: Scales of Measure

Quantification of all performance and resource concepts must be
taken seriously. Ideally, you need to have a corporate policy that all
such ideas will be expressed quantitatively at all times. Nothing less
will satisfy ‘the need to be the best’ in a fast-changing competitive
world.

Here is a summary of the key ideas about scales of measure:

. you can and should always define a scale of measure for any system
critical variable performance or resource attribute

Function

Financial Budget
[Stakeholder B]

Effort

Elapsed Time

Financial Budget
[Stakeholder A]

Usability

Reliability

Innovation

Environment

Security

Cost Reduction

Resource Performance

Client Accounts

0%

100%

0%

100%

[Operator]
[Management]

100%

0%

Figure 5.5
A representation of multiple performance and resource attributes showing goal and
budget levels respectively. The ‘point’ of the icon goal and budget symbols indicates
the level (reference needs to be made to the Scale to interpret the numeric value). One
constraint, a Fail level, is shown on the resource attribute for Financial Budget [Stakeholder
A]. The lines of the arrows represent the scales of measure (divisions along the scales are
also marked).

Scales of Measure 163

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH005.3D – 137 – [137–164/28] 29.6.2005
12:39PM

. defining a scale of measure is a teachable practical process

. specification of a scale can be done using embedded qualifiers, which
makes it more immediately powerful and also reusable in other projects

. most scales of measure are tailored variations of a generally applic-
able set of scales (like Usability and Maintainability). Once you have
learned the general set, it becomes much easier to generate useful
scales as needed for variations

. qualities do not have to be expressed ‘qualitatively’ (for example,
using words like ‘high security’) – they should be quantified for
serious Competitive Engineering

. an organization should make a library of useful scales of measure for
its area of interest

. really good scales of measure are tailored – truly general scales (like
‘volts’) are not likely to be what you need for best competitiveness

. scales of measure in requirements are the foundation of under-
standing any design or architecture impact on that requirement –
both when it is being considered, and then when it is being
implemented in practice.

If you think you know something about a subject, try to put a
number on it. If you can, then maybe you know something about
the subject. If you cannot then perhaps you should admit to yourself
that your knowledge is of a meagre and unsatisfactory kind.

Lord Kelvin, 1893

164 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH006.3D – 165 – [165–184/20] 29.6.2005
12:40PM

Chapter

6

RESOURCES, BUDGETS
AND COSTS

Costs of Solutions

GLOSSARY CONCEPTS

Resource
Budget
Cost

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH006.3D – 165 – [165–184/20] 29.6.2005
12:40PM

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH006.3D – 165 – [165–184/20] 29.6.2005
12:40PM

6.1 Introduction

You only get what you pay for.

Folk wisdom

A system designer tries to meet the specified system requirements by
identifying value-producing design ideas (solutions). At the same time
as looking for function and performance, the designer must also
consider the resources needed, specifically respecting any constraints
placed on resource usage.

Relationships amongst Resources, Budgets
and Costs

Resources are the inputs, or the ‘fuel,’ for a system. They are needed to
produce the system’s performance attributes. They are analogous to
the capital expense, air and fuel needed for a car engine (function
attribute is to provide power) to deliver the engine’s performance
attributes.

Resource requirements specify how much we plan to use of a limited
resource to bring about change (new systems, improved systems) and/or
to operate a system. Resource requirements are also known as budgets.

Stakeholders’ resources pay all the real project and system costs. In other
words, costs are the actual consumption of resources. Resource require-
ments are therefore sometimes termed cost requirements (or cost budgets).

The term ‘resources’ is used here in the broadest sense of that word. It
covers money, time, people, space and any other ‘currency’ with which we
pay for system changes and the operational system.

Stakeholder Requirements and Resources

Projects exist primarily to deliver stakeholder performance require-
ments. A system’s functions are probably already in place, and may
well have been for ages in earlier generations of the system, but the
projected performance outputs (qualities, workload capacities and/or
resource savings) of the system are probably not satisfactory – or they
will not be in the future. That is what puts you in the ‘business of
change,’ in other words ‘creates your project.’

Any project sponsor has limited resources, and is faced with alternative
ways to use them. Projects must control costs, or they will either exceed

Resources, Budgets and Costs 167

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH006.3D – 165 – [165–184/20] 29.6.2005
12:40PM

their project sponsors’ capability for providing resources or be seen as a
less attractive (read ‘less profitable’) investment for those resources.

For most of today’s projects, controlling cost (resource expenditure) is
quite a juggling act: you have to balance and trade off performance
against budgets. Your stakeholders want a better system, but not at too
high a cost. They can usually specify a ‘budget’ for what they are
willing to pay for each system improvement, based on their knowledge
of their current system and their competitors’ systems. Of course, their
budgets may or may not be realistic!

There may also, in practice, actually be real and absolute limits on their
budgets, which are in no way just ‘hopeful plans’. These limits will more
severely restrict the amount of resource that can be made available.

‘Limited resources’ means that either there are necessary economic limits
(it would not be profitable to spend more, or other projects need these
resources more) or finite availability (there is really no more resource
available at all).

To complicate matters further: it could also be the case that some of
your competitors are also willing to provide your stakeholders with
improvements. Maybe, only if you bid the lowest-cost solution for the
defined system performance levels, will you get any development
business whatsoever.

The Relationship between Costs and Performance
Delivery

Many, but not all, system performance attributes are directly related to the
operational costs of using the system or to the costs of changing the
operational system. As examples, think of qualities such as ‘Maintainabil-
ity’ and ‘Reliability’ and workload capacities such as ‘Response Time.’ To
give a specific example, a project might invest some resources to produce a
system with a ‘higher ease of maintenance.’ The resulting system, in
operation, will have long-term lower Maintenance Costs – due to the
improved Maintainability attribute level (Scale:<mean time to repair>.)
which was the result of a one-off investment (an implementation cost).

Ultimately, every system requirement can be viewed in terms of
resources. When making decisions about system changes, a stake-
holder is merely exercising choice over where resources are to be
expended – by choice (now) or by default (later)!

The key point is that there usually is choice about where and when
resources are expended. To be competitive, not only must a stake-
holder consider if an investment bears a clear relationship to produ-
cing the required benefits, they must also be sure that the specified

168 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH006.3D – 165 – [165–184/20] 29.6.2005
12:40PM

‘required benefits’ are the ‘correct’ objectives and that the selected
investment is going to give the best available payoff.

Look at the Use of Resources across the Entire
System Lifetime

There is no point in narrow cost control. We need ‘value for money’
control instead. We must learn to balance the use of resources across
the entire system lifetime. To give some examples:

. there is little use in simply controlling an implementation project’s
financial investment, if the result is excessive operational costs for
the resulting system, or excessive system retirement costs

. it is no good constraining the time to market, if the consequence is
that the product cannot achieve the necessary performance levels for
sales on that market

. there is no point in constraining head count on a project only to
experience that the consequence is project delays to market, which
threaten profitability.

The design engineer must be able to intelligently trade off and
balance, to some reasonable degree, all the many performance and
cost requirements. To do this, a full set of requirement specifications
is required across the entire system lifetime. Otherwise, any tradeoffs
will be carried out without knowledge of the ‘full picture,’ and short-
term priorities will tend to dominate.

Numeric Performance Levels Enable Us to
Understand the Associated Costs Better

Numeric performance requirement specification, with sufficient pre-
cision for purpose, is necessary in order to be able to calculate the costs
of achieving the performance levels with any precision. Conventions
such as specifying performance levels as ‘low,’ ‘medium,’ ‘high’ and
‘extremely high,’ will not allow us to exercise reasonable control over
costs. For example, availability levels like 99.90%, 99.98% and
99.998%, which can easily have order-of-magnitude cost differentials
to achieve, would be impractical to distinguish amongst by merely
using such non-numeric terms.

The Cost of Perfection – Beware Infinite Cost Increases

‘Perfect quality’ does not seem possible in our world and lifetime. The
stakeholder would always like to have it (the ‘Ideal’ level), but cannot
ever afford it in practice. It seems that the ‘cost of perfection’ is infinite

Resources, Budgets and Costs 169

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH006.3D – 165 – [165–184/20] 29.6.2005
12:40PM

resources. More practically, the costs of performance levels ‘nearing
perfection’ have a nasty tendency to accelerate towards infinity. So, as
we become more ambitious regarding performance, we must become
much more exact at specifying the performance levels, if we are to
hope to understand and control the cost implications.

Further, we must also understand that our systems can be sensitive to
very small changes in any attribute or design specification. These
seemingly small changes can give unexpectedly large cost increases,
incalculable in advance.

Specify Costs Down to a More Detailed Level – Not
Just Total Costs!

We also need to specify the cost requirements in far more detail than
people usually do. Not a simplistic ‘bottom-line-for-everything’ cost
budget, but in detail. What costs are associated with every increment of
performance? What costs accompany each increment of function?
Estimating and tracking detailed costs will improve our capability of
getting feedback early and correcting any situation where the costs are
getting ‘out of line’. One practical way to view such cost information
is by using an Impact Estimation table (IE table) (see Section 6.8 and
Chapter 9, ‘Impact Estimation’).

Accurate Estimation of Costs in Advance is Unlikely
for Complex Systems

In advance of building and delivering complex systems (or parts
of them), there is no reliable way with reasonable accuracy, to

D
ev

el
op

m
en

t
C

os
ts

Reasonable
Costs

High Costs

99% 99.9% 99.98% 100%

State-of-art
Border

Impossible
Costs

Availability

Figure 6.1
As we move any performance level towards nearing perfection, we increase costs dra-
matically in the direction of infinite costs.

170 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH006.3D – 165 – [165–184/20] 29.6.2005
12:40PM

compute the real, final cost or, to compute the consequential,
longer-term cost (Morris 1994). History shows that it is more
successful to stipulate a reasonable budget amount, and then ‘see
how much you can get out of it’ (MacCormack 2001; Mills
1980). This means that cost budgets cannot really (and should
not) be unilaterally fixed in advance for defined performance
requirements.

Multiple cost budgets and multiple performance goal levels must
somehow be set together in some reasonably ‘balanced’ way. The exact
balances amongst them may well be difficult to estimate or know in
advance: only the inexperienced believe they can accurately calculate
such effects. But we can ‘learn as we go’ about expected costs in small
increments of experience.

Use Design to Cost and Evolutionary Project
Management (Evo)

In practice, the best approach to controlling costs for complex systems
must be to ‘Design to Cost,’ and then to use the Evolutionary Project
Management (Evo) method (see Chapter 10) and track actual costs.

‘Design to Cost’ means that you intentionally select designs which fit
within your committed cost budgets. You may even trade off some
marginal performance levels in order to stay within your resource
constraints and meet resource targets (budgets). It depends on your
priorities. (The alternative is to design for performance alone, and be
surprised at the budget overruns!)

Using the Evo method for your project means delivering to your
customer or market a succession of improvements in the system’s
functionality and performance levels. The highest priority improve-
ments must be delivered ‘first’ (at the earliest opportunities). You
must be prepared to learn from the frequent feedback from the partial
deliveries and to make any necessary adjustments in cost budgets. In
practice, this is in your interest because, with early warning, you can
‘change course’ early and so avoid many cost problems.

When, eventually, the budgeted resources do run out – even if you
have not delivered all the requirements yet – you can ask, like Oliver
Twist, for ‘another cup of broth.’ If you have been good at delivering
value in relation to the resources you have used, then one would
expect that your stakeholders would want to keep you in business
(the next ‘round’, at least).

The reader may well find that the ideas of ‘Design to Cost,’ and of
taking an evolutionary approach to costs are strange. But we argue

Resources, Budgets and Costs 171

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH006.3D – 165 – [165–184/20] 29.6.2005
12:40PM

that they are both necessary and possible. Planguage has these
approaches in-built in the form of the Impact Estimation and Evolu-
tionary Project Management methods. Even when performance
requirements are set at the highest levels, Evolutionary Pro-
ject Management has a successful past history of being in control of
costs and deadlines (for example, the space and military projects in the
late 1970s). (More on this method can be found in Chapter 10, ‘Evolu-
tionary Project Management.’ More on ‘Design to Cost’ can be found in
Chapter 7, ‘The Design Process’ and in Chapter 9, ‘Impact Estimation.’)

We can control costs if we get early warnings of unexpected costs
and we are able to react to these warnings. We must have early,
frequent, feedback mechanisms in our planning, our systems engi-
neering and our project management. We can get this degree of
control:

. by budgeting resources in small (say, 2%) increments

. by designing to stay within the budget

. by reacting to experience with cost expenditure (changing
designs or requirements as far as it is realistic to do so)

. by monitoring a multiplicity of resource budgets and a multiplicity
of performance goals

. by specifying all the constraints that apply to the problem, in
advance of solving it.

6.2 Practical Example: Resources, Budgets
and Costs

Resource Requirement Specifications: Allocation
of Resources

We are all familiar with the simplest types of ‘resource limitation’
specifications: ‘the total budget is a million’ and ‘the deadline is
January next year.’ There is a real human need for these simple
ideas.

However, in order to control and deliver ‘within budget’, we must
take a more sophisticated approach to budget specification. We must,
for example, relate resources more carefully to exactly what is to be
achieved or delivered to stakeholders (the required function and
performance attributes), and we must consider the resource con-
straints. If we fail to do so, then both time and money will run out
but we will not have achieved our ‘real aims,’ which are the function
and performance improvements. For example, if only 2% or 20% of
the work is accomplished by using 80% of our budget, then we are
usually in deep trouble.

172 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH006.3D – 165 – [165–184/20] 29.6.2005
12:40PM

Here is an example of a generic financial budget specification, which
helps ensure more specific detail:

EXAMPLE Financial Budget:
Scale: Percentage (%) of total initial Project Money Allocation.
Type: Resource Requirement.
Meter: Project Accounting.
=========================== Constraints ===========================
Survival [Final Deadline]: 100% ‘‘Must not use more than this by final deadline’’.
Rationale [Survival]: If >100% we have a loss on this project, and it can be deemed
a failure.
Fail [Final Deadline]: 90%. Rationale: This gives us 10% profit.
============================= Targets ============================
Budget [For each 2% of Total Project Calendar Time, If 2% Benefit]: 2% ‘‘of total
budget. See Scale above.’’
2% Benefit: Defined As: At least an incremental 2% of the total of all planned
performance improvement (‘benefit’) shall be delivered.
Rationale [2% Benefit]: This Evo approach will give us consistent control and
feedback throughout the project, so we can take action early if necessary, to avoid
disaster.
Stretch [Final Deadline]: 80%.
Rationale [Stretch]: This gives us 20% profit. ‘‘Double the normal.’’

Notice the subtle distinction between a Survival level (a hard budget constraint level to
avoid unacceptable losses), and a Fail level (a softer budget constraint level to avoid some
sort of failure or pain). The Budget is the actual required target budget for some degree of
success. The final target set, ‘Stretch,’ is intended as a motivating cost target. Consider how
the resulting ‘differentiated’ project budget plan will differ from the simplest budget
maximum specification.

In the example, we are specifying in the Budget level that for
every 2% of our budget we had better not plan to use more than
2% of the calendar time budgeted, and we had better plan to
deliver corresponding planned performance improvements in mea-
surable increments. I remind the reader that the previous two
chapters tried to introduce the notion that performance measures
(such as 2% of any planned performance improvement) can be
specified and measured.

If you want project control, you will insist on doing things on
such a ‘pay as you go’ basis (or even, ‘no cure, no pay’). If you let
projects spend money, without demanding clearly measurable
results, I promise you ‘they’ will spend your money, take your
time and be unable to give you anything worthwhile in return. On
several occasions, I have investigated very large projects, in the
UK, Sweden and Germany, which have managed to consume
hundreds of millions of dollars without delivering a single solution
of any value to any stakeholder. Take steps to ensure this doesn’t
happen on your project!

Resources, Budgets and Costs 173

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH006.3D – 165 – [165–184/20] 29.6.2005
12:40PM

EXAMPLE Engineering Hours:
Gist: To help ensure resource usage is balanced with the business progress and value
by controlling the allocation of engineering hours to different stages and types of
work.
Ambition: Low resource-use in beginning, more as value increases.
Type: Resource Requirement [Engineering Work-Hours].
Scale: % of total Engineering Work-Hours allocated.
Budget [Early Pilot Trials]: 10%,
[Domestic Deliveries to Contracts]: 10% <- Marketing Plan 6.8,
[From Next Year, Domestic Deliveries, Wholesalers]: 20%,
[European Deliveries, Contracts [At least 10 signed], If Authority Given]: 30%,
[European Deliveries, Wholesalers [1 in each country]]: 30% <- The Board.

Authority Given: Authority: Board Approval granted for this budget fraction <- The
Board.
An example of allocating a budget. Notice the conditions ‘‘[From Next Year], [At least 10
signed], [1 in each country], [If Authority Given].’’ We could call this a ‘conditional
budget.’

6.3 Language Core: Resources, Budgets
and Costs

Resource Requirement Specification

Resource requirements (Budgets) are specified in a similar manner to
performance requirements, because they are also scalar requirements (that
is, they are variable along a defined scale of measure). See Section 4.3,
‘Language Core: Scalar Attributes.’

EXAMPLE Logic Space:
Type: Resource Requirement.
Scale: Maximum Storage Space in megabytes.
Owner: System Architecture.
Stakeholders: {Architect, Hardware Storage Designer, Handset User}.
Fail [Any One Function]: 100 Mb. ‘‘A resource constraint’’.
Budget [Any One <Frequent> Function]: 50 Mb. ‘‘A resource target’’.

6.4 Rules: Resource Requirement Specification

The rules for scalar requirement specification (Rules.SR) apply
(see Section 4.4).

174 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH006.3D – 165 – [165–184/20] 29.6.2005
12:40PM

6.5 Process Description: Resource Requirement
Specification

Process: Resource Requirement Specification

Tag: Process.RR.

Version: October 7, 2004.

Owner: TG.

Status: Draft.

Gist: A process for specifying resource requirements and for cost
estimating, resource budgeting, and project adjustment to stay within
budgets.

Note: This process is highly iterative, and needs to be done early and often.
It should actually be embedded in the Evolutionary result cycles. It is
described here so that the reader sees the multiple elements of determining
budgets. This is certainly not a simple procedure within a real project.
Budgets will probably need to be estimated and adjusted several times, in
the course of attempting to achieve a balance of the performance and
function requirements with the resources.

Entry Conditions

E1: The Generic Entry Conditions apply. The specific source docu-
ments that should have already exited successfully from Specification
Quality Control (SQC) include:

. the current requirements

. the design specifications

. any Impact Estimation tables (giving cost estimates for designs, or
for Evo steps).

Note: If any of the source documents has failed to successfully exit SQC, then
you can ‘stipulate’ desired costs, but you do not have a reasonable basis to
confidently ‘estimate’ the costs of the designs/plans, which are needed to
deliver the desired functionality and performance levels, on time.

Procedure

P1: Identify Resource List: Get existing lists of ‘critical resources to
be controlled’ for this sort of project. These lists should include such
things as project elapse times (long and short term), people, people work
hours, project space, investments, development costs, production costs
and operational costs (including maintenance costs).

Resources, Budgets and Costs 175

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH006.3D – 165 – [165–184/20] 29.6.2005
12:40PM

P2: Analyze Benchmark Costs: Examine earlier similar projects
for cost levels, and cost deviations from plans.

P3:Determine Project Costs:Determine acceptable and unacceptable
cost levels for this project. Consult any contracts, marketing plans and
product plans.

P4: Produce Initial Project Budgets: Specify an initial draft of project
resource budgets.

P5: Perform SQC: Perform Specification Quality Control (SQC)
using Rules.GS, Rules.RS, Rules.SD and Rules.SR. The source docu-
ments (process inputs) are listed in the entry condition E1 above. If
the specification is not ‘clean enough’ (the SQC process calculates that
there are one or more remaining major defects/page), then return to
P1 and cycle through the procedure again as required.

P6: Carry Out Evo: Perform an Evo step. (Deliver some results!)
Measure real costs, for the delivery, versus the budgeted step costs. Re-
plan either costs or other things (such as designs, performance levels, and
timing) in order to keep within the project resource requirements. Con-
tinue ‘cycling’ with this step until all the planned Evo steps for the project
are completed.

Exit Conditions

X1: The Generic Exit Conditions apply.

The entire process of cost adjustment, and learning, goes on as long as
money is still being spent on the project, or spent on the operational
system. ‘Project end’ allows exit from the project. ‘System/Product end’
(that is, the system or product is no longer sold or distributed) allows exit
from the system/product support process. This is a formal way of saying
‘this is a continuing process, as long as resource is being consumed.’

6.6 Principles: Resource Requirements

1. The Principle of ‘Many Critical Risks’
There are many resource, performance and condition dimensions
critical to any system, not just one or a few.

2. The Principle of ‘You Can’t Have It All, Trade-offs are a Necessity’
Fixing the required level of one resource dimension arbitrarily can
only be done at the probable expense of other attributes.

3. The Principle of ‘You Get What You Pay For’
It is really the availability of resources, which limits the levels of
performance that can be delivered in practice.

176 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH006.3D – 165 – [165–184/20] 29.6.2005
12:40PM

4. The Principle of ‘Attribute Balance’
Once you have found a balance between performance and costs,
management cannot cut the financial budget, people or time
without negative consequences.

5. The Principle of ‘The Cost of Perfection’
Perfect quality costs infinity.

6. The Principle of ‘The Rolls Royce’
Near-perfect performance levels cost more than most people
would pay.

7. The Principle of ‘Natural Ambition’
The pressure on resources will always be at a ‘level of discomfort’,
not to say downright intolerable – this is a natural management
strategy to find out how far they can push!

8. The Principle of ‘The Traffic Bottleneck Illusion’
Increasing your allocated resources will not relieve the pressure on
you, but only raise that sponsor’s expectations.
Removing one bottleneck serves mainly to discover others.

9. The Principle of ‘Really Useful Resource Management’
The only practical way to control costs and performance in
large complex dynamic systems is by early, frequent realistic
evolutionary feedback on costs, and consequent adaptation to
realities.

10. The Principle of ‘Shifting Conflicts’
Conflicts amongst budget targets, performance targets and design
ideas are natural; there’s no blame. You just keep resolving them:
it’s the name of the game.
Budget constraints will always exist and, will always be subject to change.

6.7 Additional Ideas

Using Impact Estimation and Evolutionary Processes
to Balance Requirements

There are two Planguage methods that are worth outlining1 at this
point, because they are fundamental to the control of costs (and also
performance).

One is Impact Estimation (IE), which enables design evaluation against
multiple resource budgets and multiple performance targets. It produces

1 See Chapter 9, ‘Impact Estimation’ and Chapter 10, ‘Evolutionary Project Manage-
ment’ for more detail.

Resources, Budgets and Costs 177

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH006.3D – 165 – [165–184/20] 29.6.2005
12:40PM

an IE table that provides, amongst other information, performance to
cost ratios, which allow relative assessment of the proposed designs.

The other method is Evolutionary Project Management (Evo), which
plans and implements design delivery in a sequence of Evo steps. The
choice of design for the next Evo step is re-evaluated once the feedback
from the implementation of the latest Evo step is received. Evo can use
the IE table information to select the design(s) for the next Evo step
and to capture the feedback from past Evo steps.

The key point is that these two methods can evaluate realistic feedback
from partial implementation of our designs.We get amore reliable picture
of the real costs of what we are doing, and can then make adjustments to
anything necessary (design, resources, performance levels and/or timing)
to achieve the performance-to-cost ratio we are satisfied with.

Table 6.1 shows an example of a simple IE table.

This IE table has three resource requirements: $Investment Cost,
$Operational Cost and Staff Resource. These are defined somewhere
else, with a Past (Benchmark) level, which is represented by the 0%
level on this table, and a Budget (or other Target) level, which is
expressed by the 100% level on this table.

The referenced designs (Contract, Supplier, Motive, Architect, Parts
Used) are also defined somewhere else with enough detail to permit us
to estimate their impact, sufficiently well for our current purposes, on
the performance goals (Quality 1 and Quality 2). Interpretations of
impact are as follows:

. 0% is no change from the benchmark

. 100% reaches the target level on time

. 50% is halfway to the target level

. !20% is a ‘negative’ impact compared to the benchmark.2

Table 6.1 A simple IE table.

Designs-> Contract Supplier Motive Architect Parts Used Sum
Requirements % Impacts

Quality 1 0% 100% 50% 30% !20% 160%
Quality 2 100% 50% 0% 20% 50% 220%

$Investment Cost 5% 10% 1% 10% 110% 136%
$Operational Cost 5% 50% 20% 1% 10% 86%
Staff Resource 10% 20% 10% 5% 0% 45%

Performance to Cost ratio 100/20 150/80 50/31 50/16 30/120

2 For costs this would imply that a design earned resource rather than consumed it. This
is not unthinkable.

178 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH006.3D – 165 – [165–184/20] 29.6.2005
12:40PM

We should arrive at the estimates of impact based on evidence (such as
experiences with the defined design ideas).

Once each design idea has a numeric impact estimate for each per-
formance cell and each cost cell, we can use these cell estimates to
calculate a ‘performance to cost’ ratio. This is the overall ratio of
performance delivered with respect to our objectives by the design idea
(the sum of Quality 1 and Quality 2), over the sum of the estimated
use of resources in relation to the plan by the design idea (the sum of
the costs: {$Investment Cost, $Operational Cost, Staff Resource}).

Using a basic IE table, the impact of any design idea on performance
with respect to its estimated costs can be evaluated. Design decisions,
such as ‘‘what happens if we drop the design idea, Parts Used?’’ can
also be assessed. Of course, the IE table simplifies, as all models do,
but it still gives useful insights.

When there is a sufficient set of design ideas, that is likely to meet the
planned levels, on time, with reasonable ‘safety factors’ (for example,
all the ‘Sum for Requirement’ values are in excess of, say, 200%), then
Evo can start to use the IE information in a slightly modified IE Table
format to plan the implementation steps of the project.

In simple terms, an Evo plan would sequence the implementation of the
design ideas to get the best results (the highest performance-to-cost ratios)
delivered to stakeholders early. An IE table can be used after each evolu-
tionary step delivery to capture the numeric feedback from the implemen-
tation of any set, or sub-set, of the designs, for any target market of interest
(see Chapter 10, ‘Evolutionary Project Management,’ for more detail).

Instead of relying solely on estimates, real performance and cost
experience is captured step by step and, of course, it can then be
compared against the estimates step by step. This feedback on real cost
and real performance levels allows better understanding of the true
future cost levels, at an early stage of the project. This leads to better
control over costs, system performance, design and projects. The heart
of good project management is such multidimensional, numeric feed-
back and consequent improvement in plans.

6.8 Real Example: Resource Target and Resource
Constraint Specification

Here is an example of a resource requirement specification, which
includes some resource constraints. It also includes price specification.
It is based on a real case study, but edited for confidentiality and to
reflect the latest Planguage terminology.

Resources, Budgets and Costs 179

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH006.3D – 165 – [165–184/20] 29.6.2005
12:40PM

EXAMPLE Installation Time:
Ambition: Installation time must not be more than that of an unlicensed system
<- RSW 3.
Type: Resource Requirement.
Installation Effort: Scale: Work Hours.
Budget [USA]: 15 <- Requirement Specification, Feb 5.
Installation Duration: Scale: Calendar Days.
Budget [USA]: 2.5 <- Requirement Specification, Feb 5.
Installation Costs:
Scale: Total Installation Cost of all Involved Parties.
Type: Resource Requirement.
Total Installation Cost: Defined As: Financial Cost of {Education of Customer
People, Involvement during Installation of Customer People, Involvement during
Planning of Customer People, Loss of Service in a PBX, Special Tools for Strange
Cabling, any other thing even if not on this list!}
Past [DECT, USA, Last Year]: <not known exactly>.
Fail [Per Installation, USA, Release 1]: Maximum of twice DECT Installation Costs.
‘‘A constraint.’’
Budget [Per Installation, USA, Release 1]: Within "20% of DECT Installation
Costs. ‘‘A Target.’’
Per User Price:
Note: The actual price targets may vary from time to time and market to market.
Type: Performance Constraint.
Note: this is NOT a budget for the project or the Base Station system. This is a result
of the design of the new system.
Scale: $ Per User Price for defined [Number of System Users] to use at a defined
[Location] for defined [Release] of total Base Station {CE and RH}.
Past [Last Model]: $1,000.
Fail [30 to 250 System Users, USA, Release 1]: $700 or more <- RSW 2.
Survival [More than 250 System Users Or Larger Building Or tougher than Normal
Radio, USA, Release 1]: $700 or more. <- RSW 2.
Subscriber Cost:
Type: Performance Constraint.
Note: The actual customer cost targets may vary from time to time and market to
market.
Scale: $ Cost for a defined [Number of Users] of System per Subscriber, including
TK and SW licenses cost to TeleCo.
Past: $600.
Fail [100 Users, USA, Release 1]: $400 or more <- RSW 2, Cost Assumptions
(Page 2).
This is a real example, but not in its final form: it is only the first draft translation of a
customer’s older, non-Planguage specification. It is also upgraded with recent Planguage
changes.

180 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH006.3D – 165 – [165–184/20] 29.6.2005
12:40PM

6.9 Diagrams/Icons: Resource Requirement
Specification

Resource Requirement Icons

Resource target and constraint icons are scalar icons, identical to those
used for performance attributes.

Resource targets specify how much we would ‘like’ to use of a resource. There
are three types of resource target: Budget (>), Stretch (>þ) and Wish (>?).

A Resource constraint is defined using a Fail concept (!) or a Survival
concept: the ‘[’ is a lower limit and the ‘]’ is an upper limit.

Resource constraints set (relatively) strong framework limits to the use
of resources. These strong constraints could be due to legal restric-
tions, contract limits or other sources, which are relatively inflexible.
They are generally outside our control. Constraints are not so easily
the subject of tradeoff decisions, as targets might well be.

Resource Requirement Specification Template

The scalar requirement template given in Section 4.9 should be used
for resource requirement specification.

6.10 Summary: Resource Requirement
Specification

There are many limited resources we must track for building, modifying
and operating a system. Budget specifications will include calendar time,
people effort, and money to implement, operate and service the system.

Resource Targets

> + >? O
Budget Stretch Wish

>

[!] O
Lower
Survival
Level

Fail Upper
Survival
Level

Resource Constraints

Resources, Budgets and Costs 181

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH006.3D – 165 – [165–184/20] 29.6.2005
12:40PM

‘Costs’ is our term for ‘use of resources’: resources that are generally in
demand for satisfying other priorities. Failure to think and document
clearly with regard to resources is likely to lead to resource scarcity
problems.

We assume that most systems that the reader is likely to use the
Planguage methods on are non-trivial and difficult to manage. They
are of such a nature that they are very difficult to predict costs for, and
almost as difficult to control the costs of. Planguage addresses these
problems in several ways:

. Planguage ensures specification of resource requirements is per-
formed in a disciplined and detailed numeric way.

. Through Impact Estimation (IE), Planguage obtains tightly inte-
grated performance and cost information. Not just the total final
budgets, but detailed budget allocation at design idea level and at
evolutionary step level, which is linked to the evolution of the
stakeholder valued results! Such resource requirement specification
information gives a better ability to predict costs in advance. Such
resource budgeting is also important to ensure engineers do ‘Design
to Cost’ from the earliest stages. It helps them keep aware that they
do have finite limits for resources. It is otherwise too easy for them
to focus on performance and technology; leaving serious cost con-
siderations until too late.

. Through Evolutionary Project Management, Planguage provides
better cost-expenditure control, because we have a way of adjust-
ing cost budgets and estimates for resource usage, as we learn, early
and frequently, from practical experience. Alternatively we can get
resource control, because we can choose ‘tradeoffs’ in order to
maintain the budgets we initially planned for. ‘Tradeoff’ means
that we can adjust certain performance levels and/or adjust certain
design specifications. We can also adjust certain qualifiers [when,
where, if]. With Planguage, we can more clearly, and earlier, see
the exact options available, and make more intelligent tradeoff
decisions.

The fundamental assumption of the Planguage method is that we
must set things up to learn (this is Shewhart’s Plan-Do-Study-Act
cycle) as rapidly as possible, before we fail, and before our competitors
do things better and ‘put us out of business’. The threat of losing your
workplace and budget to ‘competition’ applies even if you are a
government agency or a charity!

By use of Planguage practices, the all-too-common project syndromes
of ‘running out of resource (time or money) without delivering any
value’ and ‘pushing the system out of the door on the deadline; system
performance be damned’ ought to be eliminated for good! This is
more than an optimistic hope. It has been done.

182 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH006.3D – 165 – [165–184/20] 29.6.2005
12:40PM

The real price of everything, what everything really costs to the man
who wants to acquire it, is the toil and trouble of acquiring it.

Adam Smith (1723–90) Scottish economist,
The Wealth of Nations (1776)

Overview of Planguage Methods for Controlling Costs

The prerequisites for effective control over a project are tight inte-
gration of cost and performance considerations, ‘design to cost’
and using feedback on actual costs to modify plans. Planguage
methods ensure these prerequisites by demanding:

. detailed, numeric, measurable performance specifications that
adequately capture the performance requirements: the qualities
(stakeholder-related objectives) as well as the workload capaci-
ties and resource savings (the resource-related objectives)

. resource requirement specifications for the resources allocated,
and for any known restrictions on resource expenditure

. design specifications with detailed expected cost and perfor-
mance attributes of the design

. impact estimates of the abilities of the various designs to meet
both the performance goals and the resource budgets

. selection of evolutionary steps according to their stakeholder
value, and their performance to cost ratios

. feedback from live systems of the actual progress towards
achieving the performance levels, and the actual resource
expenditure after implementing each evolutionary step

. action being taken on the feedback to adjust specifications, or
the future evolutionary steps, to ensure realistic plans (revision of
budgets or tradeoffs).

A Proposed Resource Requirement Specification Policy

1. Define Resource Requirements Thoroughly: In requirement speci-
fications, all potentially critical resources shall be specified as
budgets in a well-defined, thorough manner.

2. Specify the Performance and Cost Relationship: The level of both
resource budget and performance goal detail shall be sufficient
to enable us to understand the benefit, in relation to resources, of
incremental performance improvements.

3. Make All Cost Requirements Visible: We must be able to ‘see’
all opportunities to reduce costs by investment in better system
design. The budgets must specifically incorporate ongoing
operational costs requirements (that is, the resources required
for such things as installation, adaptation, porting, mainte-
nance, recovery, auditing, servicing and/or customer help
lines) so these can compete for priority with short-term invest-
ment costs.

Resources, Budgets and Costs 183

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH006.3D – 165 – [165–184/20] 29.6.2005
12:40PM

4. Plan for the Long Term: All budgets shall consider the total lifetime
of system perspectives. This specifically includes long-term con-
siderations (such as costs of system retirement, pollution and
accidents).

5. Designs Shall Be Cost Estimated for Impact on All Critical
Resources: Costs shall be estimated for all critical and budgeted
multiple resource factors for every discrete design idea using
Impact Estimation Tables.

6. Let Value Decide the Costs: Value delivered in relation to costs,
not ‘resources consumed’ alone, should dictate expenditure. If
designs provide the opportunity for excellent required ‘payback’,
then we should automatically spendmore, and vice versa. (Given
that budgets are formulated in ‘performance to cost’ terms, and
we have Evolutionary feedback, the levels of risk should be under
acceptable control.)

7. Document Supporting Information: When defining cost require-
ments, full documentation shall be given about assumptions,
benchmarks, risks, uncertainties, ranges, authorities, sources and
other related facts so as to give us the best possible background
for rapid, confident, independent decision-making by the sys-
tems engineers and managers.

8. Justify Estimates and Perform Specification Quality Control: When
making estimates, the full array of evidence and sources of the
evidence shall be documented. Worst-case scenarios shall be
given explicitly. The estimations shall undergo Specification Qual-
ity Control (SQC).

9. Track Costs Early, During Implementation: Costs shall be tracked
and analyzed at every evolutionary step of development, so as to
learn of problems as early as possible, and take corrective action.

This policy above captures many of the key points discussed in this chapter
about Resource Requirements. Note: this policy should also be supported by
specification rules to enable the Specification Quality Control (SQC) of
Resource Requirements and Cost Estimates.

184 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH007.3D – 185 – [185–220/36] 29.6.2005
12:41PM

Chapter

7

DESIGN IDEAS AND
DESIGN ENGINEERING

How to Solve the
‘Requirements Problem’

GLOSSARY CONCEPTS

Design Idea
Design Specification
Design Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH007.3D – 185 – [185–220/36] 29.6.2005
12:41PM

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH007.3D – 185 – [185–220/36] 29.6.2005
12:41PM

7.1 Introduction

To Design and to Engineer

The basic design process is finding ‘means’ for ‘ends’: it is finding
designs that match the requirements.

What is the difference between design and design engineering? They
are both essentially the same generic, and basic, process of ‘finding
satisfactory designs.’ However, engineering disciplines are character-
ized, in my opinion, by the following distinctive traits:

. quantification of variable ideas (not ‘high’, but ‘42’)

. concern for all necessary factors (all stakeholders, all requirements
and all known design options)

. concern for more than mere ‘satisfaction’; concern for competitive
optimization – ‘being the best’, rather than just ‘getting along’

. rational and systematic argument (for example, the use of Impact
Estimation tables to discuss or present design quantitatively with
respect to facts, not ‘less formal’ design or ‘emotional’ design.

Design asks, ‘‘Is this a good design?’’
Design Engineering asks, ‘‘What are the totality of performance and
cost attributes expected from this design in relation to the multiple,
quantified, performance and cost requirements? What are the risks,
priorities, uncertainties, issues, relationships, dependencies and
long-term lifecycle considerations, that we should responsibly con-
sider about this design?’’

Requirement Specification, Design Engineering and
Evo are all Iterative Processes

Design ideas emerge, and are refined, throughout the lifetime of a
system. Iteration is necessary in order to improve both the design
ideas and the related requirements. Requirements and design ideas
cannot be determined well in one single pass. Feedback from
initial design engineering processes is necessary to get a realistic
idea of which design ideas are possible, to determine how much
design ideas might cost and to identify which tradeoffs amongst
performance levels might have to be made. Until the design and the
requirements are adjusted to this ‘balanced level’ with regard to
reality, it is not possible to ‘finalize’ a competitive design for
implementation.

In addition, after implementation starts, as a result of the measurable
feedback obtained from the delivery of each of the Evo steps, even

Design Ideas and Design Engineering 187

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH007.3D – 185 – [185–220/36] 29.6.2005
12:41PM

further refinement has to be considered for the design ideas, the
requirements and the implementation plans.

Requirement Specification, Design Engineering and Evo are inti-
mately linked, and some iteration linking them is necessary to get
the best competitive results.

Requirements Dictate and Constrain the Design, but
Detailed Requirement Specification can Wait

What stakeholders perceive as ‘value’ drives us to state ‘what stake-
holders want’ and ‘how much stakeholders might be willing to pay for
such change’: in other words, to state the requirements. Requirements,
which reflect values, give us a sound basis for evaluating a design idea:
a basis for deciding if we might get what we will find of ‘value’ from a
potential design idea.

Tungsten carbide bushes

Stainless
steel

Solid mahogany

What product marketing
specified

Corporate Product
Architecture’s Modified

Design

What the salesman
promised

Design Group’s initial
design

Sun shade

Bell

Cushions

Pre-release version

What the customer
actually wanted

General release version

Figure 7.1
The swing solutions. Source: Anon.

188 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH007.3D – 185 – [185–220/36] 29.6.2005
12:41PM

‘Interesting’ results are our ‘values.’

Keeney (1992)

We have to have at least a preliminary set of requirements, before we are
ready to ‘design.’1 These requirements could, even for a large project, be
as simple as a statement of the handful of most critical requirements.
(After all, these critical requirements are in fact usually driving the
investment and the project!) The more detailed requirements can be
derived gradually, as needed, during the Evolutionary Project Manage-
ment (Evo) process. There is no need to try to get all the detail
immediately. In fact, there is some virtue in letting the detail emerge
as a function of experience and of interaction with key stakeholders.

Note: The detail is, however, ultimately important, and must be eventually
specified, so we can fully understand the meaning, intent, risks, assumptions
and dependencies of all the requirements. For example, we need to under-
stand which requirements are targeted only at specific system components.

Any Design Idea2 can be Considered

Any design idea that potentially contributes to the solution of the
requirements, can be suggested. It is a question of how much a design
idea contributes towards meeting the requirements, and at what costs,
which determines whether a design is finally selected and imple-
mented. It is then the design idea’s real performance, on delivery, that
will determine whether it survives, or must be replaced by another
design idea.

EXAMPLE Some Design Ideas:

. using process improvement teams

. allowing the project team an extra day’s time off if a deadline is successfully met
(motivation)

. buying an extra server (buy hardware)

. giving discounts to customers who field trial new products (monetary motivation)

. buying a standard component (buy hardware with known characteristics)

. contracting for a special tailored component (subcontracting and tailoring)

. building our own software component (development in-house)

. improving testing process (improving a specific development process).

This example shows a wide variation of types of design.

1 In this book generally, I use the term ‘to design,’ but with regard Planguage processes,
I actually mean ‘to design engineer,’ that is, to use rational and quantitative approaches.
2 The term ‘design idea’ is used in this chapter. Solution, idea, strategy, design, means,
idea and design solution are all synonyms amongst many other synonyms for ‘design
idea.’

Design Ideas and Design Engineering 189

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH007.3D – 185 – [185–220/36] 29.6.2005
12:41PM

Design Ideas can be Identified during Requirement
Specification

Even while you are initially specifying requirements, you should,
if you feel that design ideas are flowing into your mind or
the minds of colleagues, develop two separate lists of design ideas:
potential design ideas and design constraints. The potential design
ideas can then be kept aside for serious consideration in the
design phase.

Potential Design Ideas

These are either design ideas that were first assumed to be require-
ments, but then were recognized as really being optional designs, or
they are simply design ideas that surfaced during requirement speci-
fication. Sometimes such design ideas are deliberately ‘brainstormed’
(for example, if experts in a specific area are available only during the
initial requirements’ gathering, then capturing their design ideas
might be opportune). Here is an example of a way of keeping track
of any potential design ideas; there is no commitment to implementing
them at this stage.

EXAMPLE Availability:
Type: Quality Requirement.
Scale: % Uptime.
Goal [USA, Version 1.0]: 99.90% <- Marketing Plan [April 20, This Year].
Design A [Availability¼ 99.90%]: Design Idea: Reuse of <high MTBF> Compon-
ents <- Ed’s suggestion.
Stretch [Worldwide, Version 3.0 and on]: 99.998%<- CEO Vision, ‘‘World Class.’’
Design B [Availability¼ 99.998%]: Design Idea: Triple Redundant Distinct Soft-
ware <- Mike.
The two design idea specifications are local to the two different target specifications. They
are not design constraints. They are clearly suggestions that need to be evaluated like any
other suggestion.

Allowing systems engineers to note design ideas at an early stage is
useful in several ways:

. it keeps track of potentially valuable design ideas which otherwise
might get forgotten

. it helps make the distinction between the requirements and the
design technology clearer (‘clear ends–means separation’)

. it lends credibility to the proposed goal levels (there exists some
credible technology for the goal level suggested)

190 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH007.3D – 185 – [185–220/36] 29.6.2005
12:41PM

. it avoids the ‘frustration’ that some systems engineers feel when they
are not allowed to be specific about the technology they have in mind

. it allows us to send a message that we have noted a systems
engineer’s suggestion or ‘pet idea’ and credited them with it –
without yet officially approving it.

Some of the early design ideas may be politically wise to consider, due
to the fact that influential stakeholders have suggested them. There is
no risk of any unfairness in considering these design ideas, because
they will have to compete with the later design ideas. All design ideas
must win their place for implementation by being the best, in terms of
numeric satisfaction of the requirements.

Design Constraints

These are design ideas within the requirement specification, which have
to be implemented at some stage. They can either specify or veto the use
of specific designs. Usually, specific qualifying conditions apply.

EXAMPLE Project Interface [Product Line¼New Generation, European Market]:
Type: Design Constraint.
Description: The full Project Interface shall be implemented using the most
<current version> available. It shall be updated whenever <newer versions> are
available.
Rationale: Project Consortium Agreements.

This design constraint (a requirement) applies only to the Product Line of
New Generation within the European Market.

The Need for Alternative Design Ideas

Choosing the Best from the Alternatives

When searching to find design ideas, it is important to look for alternative
design ideas. Each individual design idea will produce different effects on
a system’s scalar attributes: the resource usage and performance levels. It is
a question of selecting the design idea which has the best performance to
cost ratio or the ‘best fit to the requirements’ with regard to ‘delivering
stakeholder value’ compared to ‘resources used’ (value to cost ratio).

Choosing the Best Combined Set from all the Alternatives

Design ideas put together in different combinations will interact with
each other in different ways: there could be negative side effects and/or
positive ‘combining’ effects (synergy). By having several alternatives, it
is possible to select the combination of design ideas, which has the

Design Ideas and Design Engineering 191

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH007.3D – 185 – [185–220/36] 29.6.2005
12:41PM

best, estimated impact on the requirements. (Of course, the chosen
combination can always be altered over time, in the light of feedback
from evolutionary delivery.)

Reducing Risk by Use of Alternative Design

Another main reason for having alternatives is to reduce risk. If there
are several candidate design ideas, then if the first choice fails there
is always a backup. At an extreme, alternative design ideas may
be implemented in parallel to ensure that specific requirements are
fully met.

Design Optimization

When you are designing, you need to decide what type of optimiza-
tion strategy you intend to use. The strategy options for Design
Optimization Tradeoff include:

. Cost Minimization: When performance targets are met by specified
designs, we can choose to continue to find alternative designs, that
are at least equally well performing, with a view to reducing costs to
the cost targets (if not below them!).

. Design to Cost: Another approach would be to design to fully use
the all budgeted resources and to look for the designs that give
maximum impact on the performance targets. In other words, the
most value for a specific amount of limited resources. This is called
‘Design to Cost.’ ‘Cutting your coat to suit your cloth.’

Function < >
Design Idea A C

Design Idea A Design Idea D

Past Level
0%

Goal Level
100%

Past Level
0%

Budget Level
100%

Design Idea A B C

Design Idea A

Resource Performance

B

< >

Design Idea D

Figure 7.2
To ‘design’ is to find design ideas, like A, B, and C, which will contribute towards planned
performance and resource levels, while simultaneously respecting all constraints. Design
Idea D is ‘good,’ but costs too much.

192 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH007.3D – 185 – [185–220/36] 29.6.2005
12:41PM

. Design to Performance Targets within Cost: Another option
would be to design to meet all the performance targets within cost,
but to stop the process once all the planned performance levels were
met. In other words, do not use additional time to reduce resource
utilization further. This could be a possible approach when Time to
Market is the most critical resource.

. Design for Risk: Another optimization concept would be to design
with regard to risk. The most pessimistic estimates of performance
impact, and of costs, would be used to determine the ‘best design’.
There are many other devices in Planguage that help us consider risk
when designing (see specifically, Impact Estimation).

There are more combinations than those mentioned above. But you can
see some basic choices. It is important in any project that you recognize
how you are approaching the design optimization process, and that you
communicate with your management about it. It could be there is some
misunderstanding – maybe there is more financial budget available
from them, as long as you show a track record of successful delivery.

If there are specific resource budgets that are critical to you, such as
‘Time to Market’, we recommend that you initially ‘Design to Cost’
with respect to ‘calendar time’ for delivery to market. Generally, you
will want to design to meet the most critical constraints first, then see
if you can maximize delivery of performance attributes and minimize
other cost aspects in a second round of design effort.

Brief Recap of Planguage Methods and the Design
Engineering Process

See Figures 1.3 and 1.6 and Table 1.1 in Chapter 1, ‘Planguage Basics
and Process Control,’ and also the generic project process in Section
1.5. These show how the Design Engineering Process fits into the
overall Planguage process model.

Specifically, with regards the Design Engineering Process:

. Requirement Specification supports the design engineering process
by capturing the requirements. The requirements include specific
information required for design decision-making. (For example, see
further discussion on ‘Priority Determination’ in Section 7.7.)

. Impact Estimation (IE) is part of the Design Engineering Process.
It is the Planguage method used to evaluate and choose design ideas.
It also incorporates risk evaluation. In addition, IE can also be used
to monitor the actual progress towards meeting the requirements.
The actual step measurements, obtained after each Evo step has
been completed (with delivery of one or more design ideas), can be

Design Ideas and Design Engineering 193

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH007.3D – 185 – [185–220/36] 29.6.2005
12:41PM

input into an IE table and compared against the original estimates.
This feedback is used by the design engineering process, to under-
stand where the gaps in design actually exist (that is, the gaps, which
require additional design). (See Chapter 9 for further details on IE.)

. Evolutionary Project Management (Evo) is used to actually deliver
the design ideas. Evo handles risk by several means:

o implementing design, step by step
o demanding that we choose the design ideasmost likely to provide high
benefit (highest value to cost ratios, highest performance to cost ratios)
for early delivery (design ideas are ‘sequenced’ by some chosen
evaluation of their potential benefits and costs into an Evo step plan)

o testing the reality of the design ideas ‘in the field’
o providing and using feedback data after each step. We can then
realistically understand the accuracy of our estimates, concerning
design ideas, and can take appropriate measures, depending on
the level of risk we perceive

o we have incrementally ‘banked’ some results and eliminated some
risk, which maybe means we can afford to discuss taking some
higher risk steps.

Note: Both the requirement specification process and the design engineer-
ing process are incorporated into Evo; each result cycle demands
re-evaluation of the design and brief re-evaluation of the requirements
(possible adjustments and tradeoffs) (see Chapter 10). As stated earlier in
this section, there is continuous iteration amongst these processes.

7.2 Practical Example: Beginning the Design
Engineering Process

Let us say we have specified the following requirements for a project
‘Staging a Conference’:

Staging a Conference: Type¼ Function.
=========== Conference Performance Requirements ==========
Participation: Quality Requirement:
Scale: Percentage of Worldwide Membership participating.
Goal: 10%.
Representation:
Scale: Percentage of Worldwide Membership represented within
defined <groups>.
Goal [Age under 25 or equating to <Student Status>]: 10%.
Information:
Scale: Percentage of Talks rated as ‘good’ or better (5þ on feedback
sheet scale).
Goal: 50%.

194 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH007.3D – 185 – [185–220/36] 29.6.2005
12:41PM

Conviction:
Scale: Percentage of Participants wanting to return Next Conference.
Goal: 80%.
Influence:
Scale: Percentage of Participants who <improve as result of the
Conference>.
Past: 90%.
Goal: 95%.
Fun:
Scale: Percentage of Participants rating the Conference City quality as
‘good’ or better (5þ on Feedback Sheet scale).
Past: 45%.
Goal: 60%.
============= Conference Budget Requirements ============
Financial Cost: Resource Requirement [Financial]:
Scale: Average Participant Conference Cost for an individual Partici-
pant including Travel Costs.
Fail: Less than $2,000.
Budget: Less than $1,200.
A set of requirements for a conference, mostly performance requirements
and one budget.

Now we can, driven by these relatively clear requirements, start
designing.

We begin by listing any design constraints – the ‘given’ design ideas.
Here there are none, the only ‘given’ is the main function that we are
to stage a conference.

We can then list ‘at least one potential design idea, for each of the
requirements.’ This is an arbitrary way of covering the requirements
with ‘some’ design.

Design Ideas:
Central: Choose a location in the membership center of gravity (New
York?).
Youth: Suggest and support local campaigns to finance ‘sending’ a
young representative to conference.
Facts: Review all submitted papers on <content>.
London: Announce that the conference is to be in London the next year.
Diploma: Give diplomas for attendance, and additional diplomas for
individual tutorial courses.
Events: Have entertainment activities organized every evening, such as
river tours.
Discounts: Get discounts on airfare and hotels.

Now, are these design ideas going to make the conference what we want it
to be, as defined by the target levels? Nobody really knows and nobody can
say.Why not?Well, it depends on the interpretation of the design ideas and

Design Ideas and Design Engineering 195

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH007.3D – 185 – [185–220/36] 29.6.2005
12:41PM

T
ab
le
7.
1

Im
pa
ct

E
st
im

at
io
n
ta
bl
e

D
es
ig
n
Id
ea
s
R
eq
ui
re
m
en
ts

C
en
tr
al

Y
ou
th

Fa
ct
s

Lo
nd
on

D
ip
lo
m
a

E
ve
nt
s

D
isc
ou
nt
s

Su
m

fo
r
R
eq
ui
re
m
en
t

P
er
fo
rm

an
ce

R
eq
ui
re
m
en
ts

P
ar
ti
ci
pa
ti
on

80
%

60
%

0%
0%

30
%

20
%

30
%

22
0%

#
50

%
#
70

%
#
50

%
#
50

%
#
50

%
#
50

%
#
50

%
#
37

0%

R
ep
re
se
nt
at
io
n

80
%

80
%

10
%

0%
10

%
20

%
50

%
25

0%
#
50

%
#
50

%
#
50

%
#
50

%
#
50

%
#
50

%
#
40

%
#
34

0%

In
fo
rm

at
io
n

0%
20

%
80

%
0%

20
%

0%
0%

12
0%

#
50

%
#
40

%
#
50

%
#
20

%
#
50

%
#
50

%
#
30

%
#
29

0%

C
on

vi
ct
io
n

0%
20

%
60

%
80

%
10

%
80

%
0%

25
0%

#
10

%
#
50

%
#
30

%
#
50

%
#
50

%
#
50

%
#
50

%
#
29

0%

In
fl
ue
nc
e

0%
40

%
60

%
0%

80
%

80
%

0%
26

0%
#
50

%
#
40

%
#
50

%
#
50

%
#
50

%
#
5%

#
50

%
#
34

0%

F
un

50
%

40
%

10
%

0%
0%

80
%

0%
18

0%
#
50

%
#
50

%
#
50

%
#
0%

#
0%

#
50

%
#
0%

#
20

0%

Su
m

of
P
er
fo
rm

an
ce

21
0%

26
0%

22
0%

80
%

15
0%

28
0%

80
%

#
26

0%
#
30

0%
#
28

0%
#
22

0%
#
25

0%
#
30

0%
#
22

0%

R
es
ou
rc
e
R
eq
ui
re
m
en
ts

F
in
an
ci
al
C
os
t

20
%

1%
1%

1%
1%

30
%

30
%

11
1%

#
30

%
#
1%

#
1%

#
1%

#
5%

#
50

%
#
50

%
#
13

5%

P
er
fo
rm

an
ce

to
C
os
t
R
at
io

21
0/
20

26
0/
1

22
0/
1

80
/1

15
0/
1

28
0/
30

80
/3
0

196 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH007.3D – 185 – [185–220/36] 29.6.2005
12:41PM

their execution in practice. Can we influence that? Yes. By specifying a
more detailed design specification with precise details of what we are going
to do, and exactly how it is to be done in practice (the implementation and
operational design detail). In other words, we now have that first ‘sketch of
the building,’ but we need to get down to the detailed ‘blueprints’
(engineering) needed by the ‘bricklayers and carpenters.’

The first step is to assess what we can evaluate about the impact of our
proposed design ideas on the requirements (perhaps a little exagger-
ated to make our point).

The Impact Estimation table is a way to ‘see’ what we are doing. A
100% estimate on this table is a belief (right or wrong, well founded
or not) that we will reach the planned level on time. The plus/minus
estimate is a rough notion of the uncertainty. Until we get better
definition and justification, these numbers are of only slightly better
value than words, such as good, bad, excellent. But they do give us a
systematic basis for improvement in our planning.

(I ask the reader to be patient; a proper version of Impact Estimation
is presented in Chapter 9. All I am doing here is illustrating how one
might define some requirements and design ideas, and then evaluate
the impacts of each of the design ideas on all the requirements.)

The first observation I would make here is that we need to redefine the
design ideas, with more detail. This is because of the high plus/minus
uncertainties specified.

EXAMPLE Central: Town must be cheaply accessible by most Participants. Location itself must
offer reasonable priced Accommodation (like university dorms) within walking dis-
tance of the Conference Facilities. Easy access to shops, restaurants, entertainment.
<Add even more, and give concrete suggestions>

The ideal would be to create a hierarchy of the components of the
design idea, Central and evaluate each separately, to home in on
exactly what aspects of the design idea gave most stakeholder value.

7.3 Language Core: Design Idea Specification

Design specification is not just writing down the bare outline of the
‘design idea’ itself. You have the option of including a large number of
additional parameters to describe the design idea. Why bother? Well,
it is a matter of how much you want to force yourself to think about
your idea, how much you want to share in writing with others, and
how much you want to control any risks involved with the design.
You must have reasonable confidence that the design idea really will
deliver the results you have estimated.

Design Ideas and Design Engineering 197

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH007.3D – 185 – [185–220/36] 29.6.2005
12:41PM

In the design specification, you should ensure that you:

. Supply more detail in the Definition parameter, as this will lead
to better understanding of its specific performance and cost
impacts. This can be done using structural breakdown (see the
Definition parameter in ‘Transport by Buses’ example below).
Each of the sub-design ideas can be refined, until you feel that
you have enough detail in the design ideas to guarantee the
results levels and result timings, which are planned across all the
requirements (or you identify that you need additional design
ideas).

. Clarify and limit the design ideas to the specific ones that you want.
Avoid ambiguity so that other people can’t misinterpret your design
intent.

. Identify and specify designs that clearly deliver at least partly one
required performance attribute. Any ‘side-effect’ impacts of each
design, on the other requirements, must also be analyzed and
estimated. Use the ‘->’ Impacts parameter to explicitly declare
which attributes you hope, or expect, will be impacted by specific
sub-design ideas. (‘‘Design Idea A -> Safety.’’)

Of course, you need to tailor your design specifications to suit
the circumstances. A simple rule to guide you is ‘to try the
design specification parameters out at least once.’ Too much
description of a design idea will not hurt you, and can easily
be deleted if it does not serve a useful purpose. Observe what
the engineering team feels is worthwhile, and use that level of
specification.

Here is an example of specifying a design idea. It was actually used in
charity relief-organization work. (It shows how the main idea can be
supported by sub-designs. The aim being to get better control over the
results.)

EXAMPLE Transport by Buses: Design Idea.
Description: Drive Refugees back across the border by bus.
Definition [Sub-designs]:
Village: Refugees should be selected from the same, or nearby, village -> Financial
Cost.
White Paint: Buses should be painted UN white, and UN marked -> Safety <-
Geneva Convention, Article 6.3.
Agreement: <Agreement with government> to allow transport and resettlement,
without harassment, shall be made before crossing the border. Agreement papers will
be onboard the bus -> Safety.
Radio: Buses shall have radio or mobile telephone contact with our headquarters
during the transport -> Safety. ‘‘Maybe also video and tape recorder?’’
Witness: UN employees, or relief agency employees, perhaps UN soldiers will
accompany the buses -> Safety.

198 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH007.3D – 185 – [185–220/36] 29.6.2005
12:41PM

Example of a Design Specification

Tag: OPP Integration.
Type: Design Idea [Architectural].
================================= Basic Information ================================
Version:
Status:
Quality Level:
Owner:
Expert:
Authority:
Source: System Specification Volume 1 Version 1.1, SIG, February 4 – Precise reference <to be supplied
by Andy>.

Gist: The X-999 would integrate both ‘Push Server’ and ‘Push Client’ roles of the Object Push Profile (OPP).
Description: Defined X-999 software acts in accordance with the <specification> defined for both the Push
Server and Push Client roles of the Object Push Profile (OPP).
Only when official certification is actually and correctly granted; has the {developer or supplier or any real
integrator, whoever it really is doing the integration} completed their task correctly.
This includes correct proven interface to any other related modules specified in the specification.

Stakeholders: Phonebook, Scheduler, Testers, <Product Architect>, Product Planner, Software Engi-
neers, User Interface Designer, Project Team Leader, Company engineers, Developers from other Com-
pany product departments which we interface with, the supplier of the TTT, CC. ‘‘Other than Owner and
Expert. The people we are writing this particular requirement for.’’

=============================== Design Relationships ===============================
Reuse of Other Design:
Reuse of This Design:
Design Constraints:
Sub-Designs:

=============================== Impacts Relationships ===============================
Impacts [Functions]:
Impacts [Intended]: Interoperability.
Impacts [Side Effects]:
Impacts [Costs]:
Impacts [Other Designs]:
Interoperability: Defined As: Certified that this device can exchange information with any other device
produced by this project.

============================ Impact Estimation/Feedback ============================
Tag: Interoperability.
Scale:
Percentage Impact [Interoperability, Estimate]: <100% of Interoperability objective with other devices that
support OPP on time is estimated to be the result>.
============================ Priority and Risk Management ===========================
Rationale:
Value:
Assumptions: There are some performance requirements within our certification process regarding prob-
ability of connection and transmission etc. that we do not remember <-TG.
Dependencies:
Risks:
We do not ‘understand’ fully (because we don’t have information to hand here) our certification require-
ments, so we risk that our design will fail certification <-TG.
Priority:
Issues:
============================== Implementation Control ==============================
Not yet filled in.
============================== Location of Specification =============================
Location of Master Specification: <Give the intranet web location of this master specification>.

Figure 7.3
Here is a real (doctored!) example of a design specification using a version of the Design
Specification Template given later in Section 7.9. Not all parameters are filled out yet.
Notice that even the parameters which are not filled out (like Impacts [Side effects] and
Issues) are asking important questions about the design – and hinting that responsible
designers should answer such questions!

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH007.3D – 185 – [185–220/36] 29.6.2005
12:41PM

7.4 Rules: Design Specification

Tag: Rules.DS.

Version: October 7, 2004.

Owner: TG.

Status: Draft.

Note: Design specifications are either for optional design ideas (possible
solutions) or required design constraints (that is, actual requirements
AND consequently, pre-selected solutions).

Base: The rules for generic specification, Rules.GS apply. If the design
idea is a design constraint (a requirement), the rules for requirement
specification, Rules.RS also apply.

R1: Design Separation: Only design ideas that are intentionally ‘con-
straints’ (Type: Design Constraint) are specified in the requirements. Any
other design ideas are specified separately (Type: Design Idea). Note all
the design ideas specified as requirements should be explicitly identified as
‘Design Constraints.’ (Repeat of Rules.RS.R9: Design Separation.)

R2: Detail: A design specification should be specified in enough detail
so that we know precisely what is expected, and do not, and cannot,
inadvertently assume or include design elements, which are not actu-
ally intended. It should be ‘foolproof.’ For complex designs, the detailed
definition of its sub-designs can satisfy this need for clarity, the highest
level design description does not need to hold all the detail.

R3: Explode: Any design idea (Type: Complex Design Idea), whose
impact on attributes can be better controlled by detailing it, should be
broken down into a list of the tag names of its elementary and/or
complex sub-design ideas.Use the parameter ‘Definition’ for Sub-Designs.

If you know it can be decomposed; but don’t want to decompose it
just now, at least explicitly indicate the potential of such a breakdown.
Use a Comment or Note parameter.

R4: Dependencies: Any known dependencies for successful imple-
mentation of a design idea need to be specified explicitly. Nothing
should be assumed to be ‘obvious.’ Use the parameter, Dependency (or
Depends On), or other suitable notation such as [qualifiers].

(For design constraints (requirements), this is a repeat of the rule,
Rules.RS.R5: Dependencies.)

R5: Impacts: For each design idea, specify at least one main perform-
ance attribute impacted by it. Use an impact arrow ‘->’ or the Impacts
parameter.

200 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH007.3D – 185 – [185–220/36] 29.6.2005
12:41PM

Comment: At early stages of design specification, you are just establishing
that the design idea has some relevance to meeting your requirements.
Later, an IE table can be used to establish the performance to cost ratio
and/or the value to cost ratio of each design idea.

EXAMPLE Design Idea 1 -> Availability.
Design Tag 2: Design Idea.
Impacts: Performance X.

R6: Side Effects: Document in the design specification any side
effects of the design idea (on defined requirements or other specified
potential design ideas) that you expect or fear. Do this using explicit
parameters, such as Risks, Impacts [Side Effect] and Assumptions.

Do not assume others will know, suspect or bother to deal with risks, side
effects and assumptions. Do it yourself. Understanding potential side
effects is a sign of your system engineering competence and maturity. Don’t
be shy!

EXAMPLE Design Idea 5: Have a <circus> -> Cost A.
Risk [Design Idea 5]: This might cost us more than justified.
Design Idea 6: Hold the conference in Acapulco.
Risk: Students might not be able to afford attendance at such a place?
Design Idea 7: Use Widget Model 2.3.
Assumption: Cost of purchasing quantities of 100 or more is 40% less due to discount.
Impacts [Side Effects]: {Reliability, Usability}.

R7: Background Information: Capture the background information
for any estimated or actual impact of a design idea on a performance/
cost attribute. The evidence supporting the impact, the level of
uncertainty (the error margins), the level of credibility of any informa-
tion and the source(s) for all this information should be given as far as
possible. For example, state a previous project’s experience of using
the design idea. Use Evidence, Uncertainty, Credibility, and Source
parameters.

Comment: This helps ‘ground’ opinions on how the design ideas contri-
bute to meeting the requirements. It is also preparation for filling out an
IE table.

EXAMPLE Design Tag 2 -> Performance X <- Source Y.

R8: IE table: The set of design ideas specified to meet a set of
requirements should be validated at an early stage by using an Impact
Estimation (IE) table.

Does the selected set of design ideas produce a good enough set of expected
attributes, with respect to all requirements and any other proposed design

Design Ideas and Design Engineering 201

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH007.3D – 185 – [185–220/36] 29.6.2005
12:41PM

ideas? Use an IE table as a working tool when specifying design ideas and
also, when performing quality control or design reviews on design idea
specifications.

See Chapter 9, ‘Impact Estimation.’ Failing that, at least ask the ‘Twelve
Tough Questions’ about the design ideas! (Can you quantify the impacts?)
See Section 1.2 for details of the ‘Twelve Tough Questions.’

R9: Constraints: No single design specification, or set of design
specifications cumulatively, can violate any specified constraint. If
there is any risk that this might occur, the system engineer will give
a suitable warning signal. Use the Risk or Issues parameters, for example.

R10: Rejected Designs: A design idea may be declared ‘rejected’ for
any number of reasons. It should be retained in the design documen-
tation or database, with information showing that it was rejected, and
also, why it was rejected and by whom.

EXAMPLE Design Idea D: Design Idea.
Status: Rejected.
Rationale [Status]: Exceeds Operational Costs.
Authority: Mary Fine. Date [Status]: April 20, This Year.

7.5 Process Description: The Design
Engineering Process

Process: Design Engineering Process

Tag: Process.DE.

Version: October 7, 2004.

Owner: TG.

Status: Draft.

Assumption: We have clearly-stated and reasonably complete require-
ments.

Notes:

1. Design is an iterative process. The process given in this section should be
viewed with this in mind; the procedure is written as if it were carried out
in a single pass, but in practice, a much more complex pattern of cross-
checking, backtracking and tradeoffs would actually be carried out.
2. This procedure is much longer than it needs to be, due to the nature of
this book. You should probably use a more concise version (say, one
statement for each procedure step).

202 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH007.3D – 185 – [185–220/36] 29.6.2005
12:41PM

Entry Conditions

E1: The Generic Entry Conditions apply. The requirement specifica-
tion should ideally have exited from Specification Quality Control
(SQC).

E2: Any existing feedback, from Impact Estimation (design idea
analysis), or practical trials, is made available to the design
engineer.

Procedure

P1: Analyze the Requirements: You may well identify stakeholder
conflicts and overlaps3 amongst the requirements while analyzing
them. These need conflict resolution: consider if the ‘tougher’ require-
ment level can be used, identify the ‘owning’ stakeholders for all values
and negotiate with the stakeholders. It may well be worth waiting
until you have some alternative design ideas before you negotiate with
the stakeholders, as by then you will have a better understanding of

Overview of a Design Process

Design is an intellectual process, which is supported by problem definition, requirement
specification, best-practice design process standards and analysis tools. The following funda-
mental questions arise in designing:

1. Analyze the Requirements: Which requirements are of high stakeholder value? What
constraints apply? What is the priority time sequencing for delivery of requirements?

2. Find and Specify Design Ideas: How do we find and specify potential design solutions for
our requirements?

3. Evaluate Design Ideas: How do we evaluate potential design solutions?
4. Select Design Ideas and Produce Evo Plan: How do we choose from several ‘good’

design alternatives? What do we do about uncertainties, and about the risk that the selected
designs are not as good as we thought?

Notes:

Ansoff points out that ‘‘Simon has shown that solution of any decision problem in business,
science, or art can be viewed in four steps:

1. PERCEPTION of decision need or opportunity. Simon calls this the INTELLIGENCE phase.
2. FORMULATION of alternative courses of action.
3. EVALUATION of the alternatives for their respective contributions.
4. CHOICE of one or more alternatives for implementation.’’ (Ansoff 1965)

This supports the choice of the four main sub-processes of the Design Process!

Figure 7.4
Overview of a Design Process. This applies with or without a quantified engineering
approach to design.

3 Overlaps in requirements represent either an opportunity for additional value to be
delivered or, the possibility for over-estimation of value (‘double accounting’).

Design Ideas and Design Engineering 203

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH007.3D – 185 – [185–220/36] 29.6.2005
12:41PM

what solutions can be delivered. See also discussion in Section 7.7 on
Priority Management.

P1.1: Establish the Stakeholder Value on Delivery of each Require-
ment: The value on delivery of each requirement to the system/
organization should be assessed. You are looking for the requirement
areas where there are major benefits. (What is of value depends on the
stakeholders: it might not be just financial resource.) Identify the
volume of use associated with each requirement.

Ideally, the stakeholders will have already selected the highest value
requirements as the critical requirements.

For example: resource savings for performance requirements will be
relatively simple to determine. Say you wanted to bring the time of
carrying out a transaction down from two minutes to one minute. The
benefit to the business, assuming 200 such transactions were carried out
a day, would be 200 minutes per day. If operators had to wait while
each transaction went through – this could amount to freeing up over
three work-hours each day to carry out additional activities. In other
words, assuming 250 work-days each year, 250 multiplied by 200
minutes each year. To the business, the ability to free up staff or the cost
of employing the staff in this area, is the ‘value’ gained on delivering the
requirement.

P1.2: Sequence the Delivery Order of the Requirements: Sequence
the requirements for attention in the order of maximum stakeholder
value first. Adjust to cope with any dependencies amongst the imple-
mentation of requirements (These dependencies either prevent imple-
mentation or prevent some level of benefit being achieved).

Note also the possibility for delivering each requirement in stages
either by gradually improving a performance level or cost level or by
delivering into different areas at different times (that is, to divide
according to qualifier conditions; for example, by geographic area,
by role and/or by timescale).

P1.3: Establish Scope of Design Interest: Establish and specify the
scope of interest for the system design. This will be a set of qualifying
conditions covering a specific timeframe and specific system space
(locations/components/functionality). For larger systems, you might
want to divide the system into major subsets – maybe, say, by
functionality and/or by timescale, so that you can work on a series
of smaller design areas.

P1.4: Make a List of Requirements within the Scope defined:
Identify any function, performance, resource or condition constraints
specified in the requirements. Then identify the target requirements.
Note the qualifying conditions, which apply to each one of them.

204 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH007.3D – 185 – [185–220/36] 29.6.2005
12:41PM

P2: Find and Specify Design Ideas:

P2.1: Exploit any Earlier Notes of Design Ideas: Check to see if there
is already a list of potential design ideas developed at the same time as
the requirement specification. If there is, include those design ideas for
consideration.

P2.2: Establish the Design Constraints: Read the requirements to see
if there are any design constraints specified (Type: Design Constraint).
If there are, then note them and any specific conditions qualifying
them [time, place, event].

P2.3: Brainstorm Design Ideas: Search all available sources of design
information for good matches to our stated requirements. (Specifically
with regard to meeting the function requirements, achieving the
performance levels and, delivering within the budgets. Any constraints
and conditions must also be considered.)

Identify any dependencies amongst design ideas.

Also identify any design ideas that are alternatives.

Attention needs to be focused especially on the areas of greatest
benefit to the system/organization. It is the gaps between our current
updated system design process benchmarks (how well we have
satisfied requirements until now) and our specified targets, which
are of interest.

We are totally dependent in our search on the following:

. Knowledge of the existence of good design ideas (Where are they?
Do we have the best ones?).

. Having complete and reliable information about the likely impacts of
the design ideas on system attributes, so we can match the best
design ideas to our residual requirement gaps. Most design ideas
have too little specified, or available, data about their performance
and cost characteristics.

. Understanding how design ideas mix and interact with each other.
(Maybe the mixture will conflict? A design idea, in itself, might
seem satisfactory, but the effect of combination with other design
ideas, already in place, or under consideration, could be a counter-
productive. Alcohol and driving don’t mix well; though each in the
right time and place might be acceptable.)

Hint: Select design ideas from available knowledge: books, periodicals,
conference proceedings, past products, memory, colleagues, web searches,
company experience, competitive analysis, benchmarking and others.

Stop the search when a set of satisfactory design ideas has been found,
or when you run out of time to search for more.

Design Ideas and Design Engineering 205

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH007.3D – 185 – [185–220/36] 29.6.2005
12:41PM

P2.4: Draft Design Ideas: Draft a set of the design ideas, which might
satisfy the requirements. See the design specification template outlined
in Section 7.9.

P2.5: Collect Specification Detail (to support later Impact Estima-
tion) : Add detail to the design idea specifications in order that there is
sufficient information to enable estimates of the impact that each
design idea will have on each performance and cost attribute. Refine
the design idea specifications to the levels of detail, which reflect the
‘level of uncertainty’ and ‘risk of deviation’ from planned levels, which
you are prepared to accept. Ensure all suspected risks, assumptions,
and uncertainties are documented.

Document clearly, where any design idea has weaknesses with regard to
the requirements. (For example, ‘‘Risk: Too long an implementation
time.’’ and ‘‘Risk: High risk of user dissatisfaction over usability.’’)

P2.6: Consider Design Implementation: Once you have defined the
design ideas themselves, then turn your attention to their implementa-
tion processes. What qualifications are required for the implementers or
subcontractors? What process should they follow? How will they be
required to prove or measure their results? Leave nothing essential to
the whims of others! Get control over your design ideas. See
‘Implementation Control’ section in the design specification template in
Section 7.9.

P2.7: Consider System Capacity and Growth: Even when things
work well in practice initially, there is no guarantee they will continue
to do so. Success breeds volume. Volume breeds capacity problems.
The ‘good’ system is no longer good enough. So we must be
prepared to undertake a continuous responsibility for modifying the
system design to meet changed circumstances. Sometimes ‘gradual
adjustment’ is all that is necessary. Sometimes major new architecture
is necessary. You need to be explicit about system capacity and give,
if relevant, an outline of your plans of how to cater for system
growth.

P3: Evaluate Design Ideas: We must evaluate the effects of a design
on the system to which it will be added, and with regard to how it will
mix with ‘design changes yet to be implemented,’ or even ‘yet to be
imagined,’ by considering our long-range requirements, and architec-
ture, for adaptability. We must ensure that we evaluate design ideas
for their incremental effects on all of our required attributes – not just
the requirements we initially designed them to primarily impact.
Consider side effects – good and bad, intended and unintended.

P3.1: Filter for Violation of any Constraint: A design idea must not
violate any applicable constraint(s). Check each design idea against

206 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH007.3D – 185 – [185–220/36] 29.6.2005
12:41PM

each constraint. Mark the status of any design idea that violates, or
potentially might violate, any constraint as ‘Rejected’ giving the reason
in a ‘Rationale’ parameter. (This is a more systematic check than might
have been carried out when brainstorming during P2.3.)

P3.2: Estimate all Impacts: Using an Impact Estimation (IE) table,
estimate the impact of each design idea (or set of design ideas), on
each performance target and each cost budget.

Cite evidence, plus/minus uncertainty and source(s) for each impact
estimate. Determine the credibility of each estimate (using the credibility
ratings scale from 0.0 to 1.0).

See Chapter 9, ‘Impact Estimation’ for further detail.

P3.3: Consider Side Effects: It is not just a case of checking that a
design idea delivers the required benefits, we must also consider
whether a design idea has any unintended negative side effects, which
are unacceptable (some negative effects may be tolerable overall).

P3.4:Consider SafetyMargins: You also need to assess whether the safety
factors are met. Maybe a factor of two times ‘over-design’ is required?

If needed, return to P2 to look for further design ideas or, consider if
the requirements need modifying.

P4: Select Design Ideas and Produce Evo Plan:

P4.1: Initial Sequencing of Design Ideas: We are then faced with
decisions about which design ideas to select for implementation and
which to reject. We will often be faced with several ‘sufficient’ alter-
natives; any one of which would be adequate. So how do we choose?
Usually, no one dimension (for example, ‘cost’) is decisive.

In general, the selection decision must be made based on the many
dimensions of measurable performance and cost. Any conditions
(such as those specified in qualifiers) also impact selection.

Selection means prioritization. We need to determine which require-
ments we intend to satisfy first. (We have an initial selection of critical
requirements from P1.) Evolutionary project management (Evo) will
have the final say in determining the actual implementation sequence,
but during the design engineering process we must attempt an initial
sequencing of the design ideas to meet the requirements’ priorities.

Establish which design ideas impact each of the constraints.

Establish which design ideas impact each target requirement (function
targets, performance targets and budget targets). The impact estima-
tion table will provide the information for the performance and
budget targets. The design specifications will also hold some informa-
tion depending on how much detail has been captured. Remember the

Design Ideas and Design Engineering 207

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH007.3D – 185 – [185–220/36] 29.6.2005
12:41PM

performance and budget attributes do not ‘hang in mid-air’ – they will be
attached to some functionality.

Next, identify any design idea dependencies.

At this stage, there should be a sequence of design ideas dictated by the
(system scope) conditions – especially by the required timescales.

Where there are alternative design ideas, the performance to cost ratios
from an IE table can be used to determine which designs contribute
most efficiently towards meeting the requirements.

P4.2: Ensure adequate Safety Margins to address Risks: Ensure the
sum of the impact estimates for each performance requirement covers
the required safety margins for both performance and cost targets.

P4.3: Consider Design Ideas with regard to the Risks: We must also
consider the uncertainties in our evaluations. The initial, purely intel-
lectual, design process is inherently at risk of giving us false conclusions
because our system is always somehow different from all others. Past
design idea experience might not be valid. Our information on design
effects could also be too general, or even downright wrong.

Increasing
Functions
and
Performance
Levels
within
Budgets

Time

Reliability [Function X,
Earliest Opportunity]:
Fail: 99.5%.

Function Y [Month 2]:
Function Constraint.
Dependency: Function Z after Function Y.

Budget S [Total System Annual Operational Cost, End of Q1]:
Financial Budget Constraint: USD 100K.

Usability [Function X, Q2]:
Fail: >10 errors for every 1000 transactions.

Evo Step 1 Evo Step 2 Evo Step 3Evo Step 3 Evo Step 3Evo Step 4 Evo Step 5 Evo Step 6 Evo Step 7

We need a Design Idea to implement Function Y.
We must ensure no delivery of Function Z prior to this.

We need a Design Idea to improve Reliability of Function X

We must ensure Total System Annual Operational Cost
at end of Q1 is within financial budget constraint

We need a Design Idea to improve
Usability of Function X and, we should
suggest it is implemented much earlier than
this to reduce risk!

Quarter 1 (Q1) Quarter 2 (Q2)

Constraint
Requirements
against Time

Evo Plan
against Time

Implications of
the Constraints
on the selection
of Design Ideas

Figure 7.5
Diagram shows the path for a system improving over time as Evo steps are delivered. The
points marked on the time axis are the times when specified constraints have to be
delivered. The sequenced Evo steps are attempting to deliver the requirements on time.
The design ideas making up the content of the Evo steps have, as the first priority, to try to
satisfy any constraints. Not shown in this diagram – the second priority is that they deliver the
required target functions, and to the target levels for the performance and cost attributes.

208 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH007.3D – 185 – [185–220/36] 29.6.2005
12:41PM

We can make allowances to cope with risk by ‘over-design.’ We may
deliberately choose more design ideas than we strictly need in order to
have safety margins. For example, we may choose two solutions that
back each other up, rather than one.

We must also carefully validate our design choices in reality, and be
prepared to re-designwhenever practical experience shows this is necessary.

P4.4: Consider Optimization: Once we have an initial set of design
ideas, which provide a satisfactory solution, then we can try to
optimize using a declared optimization strategy (which might be a
requirement of an engineering policy statement).

For example:

. Look for the least-cost set of design ideas, which fully meets the
requirements.

. Select design ideas with the highest performance to cost ratios. This
is generally good competitive practice.

But there are all kinds of variations on optimization strategies depending
on your priorities regarding performance targets, resource budgets and risk
(see Design Optimization within Section 7.1).

P4.5: Re-define Design Definitions: Re-define design ideas, if you
can improve your impact estimates, and get better control over desired
results by doing so. Re-define them so that they have substantially
different performance and cost impacts, in the direction you need
them to be.

P4.6: Consider Pilot and/or Trial: Plan to try out design ideas, which
seem high risk, in pilots and/or trials, or specify them for implementa-
tion in early evolutionary result cycles. Feedback any results into this
process (at P3.2: Estimate all Impacts.). Refine your estimates.

Design knowledge, from past uses of a design, gives us some idea of how we
can expect things to work. But, new systems contain many new elements of
technology, inputs and people. Thus, only practical use of a new design
idea, in the real environment, will assure us that we were correct in our
estimates of design effect or will convince us that we were to some degree
wrong. So, the design engineering process must somehow be linked with a
practical process of trying things out, well before large-scale irreversible
commitment is made to design ideas.

Exit Conditions

X1: The Generic Exit Conditions apply. The set of design specifica-
tions should have exited SQC with no more than one estimated
remaining major defect/page. (Expectation: If you don’t demand such

Design Ideas and Design Engineering 209

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH007.3D – 185 – [185–220/36] 29.6.2005
12:41PM

a low exit level, the specification will have 20 or more major defects/
page.)

X2: A safety factor of <four> is required for all performance and cost
attributes.

Note: (4 times over-design, is NOT 4 times more cost!)

Note: Process ‘Exit’ means we can then use the design specification for
planning trials to get feedback (that is, using the design in Evo steps, see
Chapter 10). It does not mean the design specification is a ‘final’
specification.

Gap Analysis by Igor H. Ansoff

The procedure within each step of the cascade is similar.

(1) A set of objectives is established.
(2) The difference (the ‘gap’) between the current position of the

firm and the objectives is estimated.
(3) One or more courses of action (strategy) is proposed.
(4) These are tested for their ‘gap-reducing properties.’

A course is accepted if it substantially closes the gaps; if it does not,
new alternatives are tried.

Igor H. Ansoff, Corporate Strategy (Ansoff 1965 Pages 25–26).
Also quoted in Mintzberg (1994).

7.6 Principles: The Design Engineering Process

1. The Principle of ‘Design Ideas are only as Good as the Require-
ments Satisfied’
Design ideas cannot be correctly judged or validated except with
respect to all the performance and cost requirements they must
satisfy.

2. The Principle of ‘The Best Chess Move’
You should try with each increment of design specification or
design implementation, to get the best possible satisfaction of your
unsatisfied performance requirements, from your unused cost
budgets.

3. The Principle of ‘Results Beat Theory’
Design ideas are only as good as their real results, not their intent.

4. The Principle of ‘Early Surprises’
You never know how it works, until you have actually tried out a
design idea in practice. Get surprised as early as possible!

210 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH007.3D – 185 – [185–220/36] 29.6.2005
12:41PM

5. The Principle of ‘It’s Not Just What You Do, It’s How You
Do It’
Design ideas must try to exercise control over both design content
and design implementation. The devil is in the details!

6. The Principle of ‘Good is Not Always Good Enough’
A ‘good’ design idea might not be good enough to meet all your
targets on time.

7. The Principle of ‘Designs should have Good Return on their
Investment’
‘Good’ design ideas might cost too much, sooner or later.

8. The Principle of ‘Sneaky Gremlins’
Apparently ‘good’ design ideas might have subtly-hidden nasty
side effects. Estimate them, know when you don’t know them,
measure them, and don’t assume they won’t hurt you! They will
show you no sympathy!

9. The Principle of ‘Design Beats Test’
Design performance ‘in’, and design ‘to control’ costs:
You cannot test quality into a badly designed system.

10. The Principle of ‘Eternal Vigilance for the Butterfly Effect’
You never finally know about a design idea’s effects;
Tomorrow’s slightest change might ruin your whole project.
Even initially successful designs might have to be adjusted for growth
and change.

7.7 Additional Ideas

Priority Determination

Systems engineering can be viewed as a constant stream of priority
evaluations. So priority determination is a key concern. However, the
conventional means of deciding priority are frequently inadequate: a
subjective weighting approach is, unfortunately, often adopted. Ideally
priority determination for implementing requirements should be:

. a ‘performance to costs impact’ and ‘resource-focused’ process. It
should consider value to cost ratios, return on investment (ROI)
and take into account resource availability.

. an information-based process, which makes full use of the available
factual information, and is able to reuse this information. Not a
weight-based process.

. a dynamic process, which uses feedback from the ongoing imple-
mentation; and is open to instigating, and catering for, change in
requirements and in design ideas.

Design Ideas and Design Engineering 211

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH007.3D – 185 – [185–220/36] 29.6.2005
12:41PM

Ideally the ultimate values to the stakeholders, which are the results of
the system performance characteristics, would be evaluated and used
to determine priority. In practice it might be difficult for a systems
engineer to access the stakeholder domain data needed to calculate the
value that the stakeholder would expect to experience. Even the
stakeholder might have difficulty estimating the ‘value delivered’
accurately. So, we might choose to fall back on a more immediate
notion of stakeholder value – meeting the required targets.

What is wrong with the Subjective Weighting Approach for
Determining Priority?

In the priority weighting (or priority ranking) process, each element of
a set of elements in a decision-making model, is subjectively assigned a
numeric value indicating its priority (For example, a value on a scale
of 1 to 10 or, a percentage weight).

Thedegree of subjectivity4 is determinedby such factors as the actual people
asked (the number of people, their roles and their expertise) and how they
arrive at their decisions (their decision processes; including such things as
their influences). Inmany cases, people are asked on a one-off basis during a
groupmeeting to assign numerous comparative weightings ‘off-the-top-of-
their-heads.’ Inadequate documentationofwho,when andwhy (experience
and/or fact) is widespread. The reasons why such a process is weak, when
determining the priority for implementing requirements, include:

. Information overload: too many things have to be taken into
account at once for subjective assessment to work well.

. Lack of specific information: often there are gaps in the information
available: evidence and source data are usually missing.

. ‘One-off’ weightings: weightings tend to be ‘frozen’, they are not
reassessed frequently.

. Lack of consideration of resources: resources are simply not taken
into account.

. An individual stakeholder’s viewpoint is limited (a person’s subject-
ive judgment depends on many things. For example, experience and
access to information).

. Typically people can only participate in supplying their require-
ments and committing their resources. They are unlikely to be able
to make a globally optimal priority decision, on behalf of the entire
stakeholder community.

. In a group meeting, factors such as authority, office politics and
personality interfere with the outcome.

4 Note, I am objecting to subjective weightings, not to stakeholders proposing their
own subjective requirements.

212 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH007.3D – 185 – [185–220/36] 29.6.2005
12:41PM

The Role of Resource in Determining Priority

Planguage defines priority as follows:

A ‘priority’ is the determination of a relative claimon limited resources.
Priority is the relative right of a competing requirement to the bud-
geted resources.5

If resources were unlimited, there would be no need to prioritize things.
You could have it all.

Many approaches to priority oversimplify or even eliminate considera-
tion of resources (for example, see Saaty 1988; Akao 1990). Yet return
on investment (ROI) is ultimately the key driver when deciding
priority. What value shall be obtained in relation to the ‘resources
needed’ (the costs)?

Resource availability can also be a factor in determining implementa-
tion priority. Selection of a priority solution might be:

. influenced by a lack of some resources

. affected by the ability to substitute one resource with another.

Planguage Information Supports Priority Determination

Planguage captures a wide range of reusable information that supports
priority determination. It quantifies all scalar requirements and caters
for individual deadlines at a detailed level, and as a result gives you a
greater level of priority control. Some key Planguage specification
parameters assisting priority determination are as follows:

. Value

. Stakeholder

. Constraint

. Target

. Dependencies

. Qualifiers [Time, Place, Event]

. Authority

. Source.

The source, authority, and stakeholder information establishes the
stakeholders affected by a requirement, and their level of responsibility.
When determining priority, meeting any constraints is the first priority.
The next priority is to meet the targets. The qualifiers narrow the
requirements down to the specific conditions: time qualifiers specify

5 I mean all types of resource including time to deadline, human effort, money and space.

Design Ideas and Design Engineering 213

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH007.3D – 185 – [185–220/36] 29.6.2005
12:41PM

the timescales, place qualifiers limit the system space and event quali-
fiers state any specific circumstances, which apply.

Planguage might capture this information, but it requires evaluation to
establish the priorities. Theremay be priority conflicts needing negotiation.

Priority Strategy

One piece of information vital for priority determination is the
strategy for priority. There are several different strategies that could
be chosen. See discussion on Design Optimization within Section 7.1.

Dynamic Priority Evaluation

Planguage adopts a dynamic, numeric idea of priority. Priority is
defined as the claim on resources to develop or operate a system. It
is the currently unfulfilled requirements, (the gaps) which have prior-
ity. Our highest priorities, at any moment in time, are the unfulfilled
requirements that are due next, date-wise.

There are no artificial weighting factors needed in Planguage. We use
only direct natural statement of the qualities and costs we want,
together with when we want them. We compare ‘what we want’ with
‘what we have’ at the moment. The larger the gap between ‘wants’ and
accomplishments, the higher the current priority in that area to do
more design work or to do more implementation work.

Using Evo, priority control becomes early, frequent and continuous,
throughout the project design and implementation phases. Priorities
change as they are satisfied (just as appetite changes as food satisfies it).

Also, the basic requirements can change at any moment of a project.
It would be convenient if they didn’t, but the real world is not that
co-operative! Continuous re-assessment of priority, allows any changes
in the requirements to be incorporated into the system design process.

See also Section 9.7 on priority.

7.8 Further Example/Case Study: Design
Specifications Masquerading as Requirements

This is a sample of some real design ideas, which were found in a
requirement specification. (Certain details are changed for confidentiality.)

They are extremely early outline drafts and still need a lot of
work! We certainly had not yet enhanced the specifications to

214 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH007.3D – 185 – [185–220/36] 29.6.2005
12:41PM

the level required by the Planguage template in this chapter.
However, the drafts do give some practical insights into simple
Planguage formatting. The most important steps we took were as
follows:

. to refuse to treat them as requirements

. to identify the performance attributes they were intended to impact
(see ‘Impacts’ parameters below) and

. to define the impacted performance attributes properly.

EXAMPLE Adaptive Channel Allocation: ACA: Design:
Assumption [ACA]: New Product must automatically yield to Macro cellular system,
and to re-tuning of the Macro radio network.
Impacts [Co-existence]: Slow or Fast? <- Marketing Specification 3.11.
Note: This is one design idea, not a constraint.
Automatic Roaming Designs: ‘‘A rough collection of design ideas.’’
Impacts: Automatic Roaming.
Note: these may be design constraints! <- New Product Team 4 March.
IS-41 signaling link to the public network <- Marketing Specification 5.2.1.
Signaling, data and messaging interfaces <- Marketing Specification 5.2.
The New Product must support the protocol of Cellular Messaging Teleservice
(CMT) over its signaling link over both public and cellular network <- Marketing
Specification 5.2.2.
The New Product must support the receipt and acknowledgment protocol for voice-
message-waiting indication <- Marketing Specification 5.2.3.
Cell Plan Minimization:
Impacts: {Installability, Maintainability}.
Cooling Fans [Radio Heads]: to be avoided to avoid noise, but quiet ones, as defined
by Quietness quality requirement, acceptable.
Impacts: Quietness <- Marketing Specification 4.1.5.
Product Evolution: Design Idea. ‘‘These design ideas are a rough collection from the
Marketing Specification’’.
Impacts: Evolution.
New Product shall have a modular structure <- Marketing Specification 3.2.
Modular, future proof <- Marketing Specification 4.3.3.
New Product shall be easy to upgrade <- Marketing Specification 3.3.
The switch must support remote SW loading <- Marketing Specification 4.3.4.
‘Plug & Play’ <- Marketing Specification 4.5.2.
Remote Software Upgrade: for both correction and upgrading proposes <- Market-
ing Specification 4.5.14.
Software changes shall not require manual physical access to Radio Heads
<- Marketing Specification 4.5.15.
New software – upgrades, patches, new releases, etc. should require a minimum of
scheduled downtime for New Product <- Marketing Specification 4.5.16.
Home Location Register: HLR:
HLR is part of the Macro cellular system?? <- Marketing Specification 4.3.7.
Impacts: <unspecified>.
Low Power Consumption [Radio Heads]:
Low Power consumption will be designed.
Impacts: Quietness ‘‘in order to avoid fans and consequent noise’’ <- Marketing
Specification 4.1.5.

Design Ideas and Design Engineering 215

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH007.3D – 185 – [185–220/36] 29.6.2005
12:41PM

EXAMPLE

CONTINUED

Low RF Power Output [Radio Heads]:
Impacts: {<avoiding interference>, Availability, Co-existing, Per User Cost, Robust-
ness, others} <- Marketing Specification 4.2.1.8.
Remote SW Loading:
The switch must support remote SW loading <- Marketing Specification 4.3.4.
Impacts: Maintenance.
Single Cabinet [Central Equipment]:
The Central Equipment must fit into a single cabinet including power, but not
batteries <- Marketing Specification 4.5.4.
Comment: This is really a way to achieve Volume of 36 liters as estimated by TW.
RH1: Assumption: RH assumed to be single cabinet.
Impacts: <unspecified>.
Basically, what we did was to identify these design specifications as design ideas, not
requirements (design constraints), and to structure them so we could see their Source and
their Impact intents.

7.9 Diagrams/Icons: The Design
Engineering Process

Quality A

Workload
Capacity C

Resource
Savings B

Staff Resource

Financial Cost

Function < >

Budget/Goal

Past

Design Idea

Key

Design Gap requiring more Design Ideas

<

>

Icon

PerformanceResources

Figure 7.6
Diagram showing the gap between the Past and the Goal/Budget levels and the
contribution that a Design Idea makes towards filling the gap.

216 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH007.3D – 185 – [185–220/36] 29.6.2005
12:41PM

Design Specification Template <with Hints>

Tag: <Tag name for the design idea>.
Type: {Design Idea, Design Constraint}.

============================ Basic Information ===========================
Version: <Date or version number>.
Status: <{Draft, SQC Exited, Approved, Rejected}>.
Quality Level: <Maximum remaining major defects/page, sample size, date>.
Owner: < Role/e-mail/name of person responsible for changes and updates>.
Expert:< Name and contact information for a technical expert, in our organization or otherwise
available to us, on this design idea>.
Authority: <Name and contact information for the leading authorities, in our organization or
elsewhere, on this technology or strategy. This can include references to papers, books and
websites>.
Source: <Source references for the information in this specification. Could include people>.
Gist: <Brief description>.
Description: <Describe the design idea in sufficient detail to support the estimated impacts
and costs given below>.
<Term Tag here>: Definition: <Use this to define specific terms used anywhere in the
specification>. ‘‘Repeat this for as many definitions as you need’’
Stakeholders: <Prime stakeholders concerned with this design>.

=========================== Design Relationships ==========================
Reuse of Other Design: <If a currently available component or design is specified, then give
its tag or reference code here to indicate that a known component is being reused>.
Reuse of This Design: <If this design is used elsewhere in another system or used several
times in this system, then capture the information here>.
Design Constraints:<If this design is a reflection of attempting to adhere to any known design
constraints, then that should be noted here with reference one or more of the constraint tags or
identities>.
Sub-Designs: <Name tags of any designs, which are subsets of this one, if any>.

========================== Impacts Relationships =========================
Impacts [Functions]: <List of functions and subsystems which this design impacts attributes
of>.
Impacts [Intended]: <Give a list of the performance requirements that this design idea will
positively impact in a major way. The positive impacts are the main justification for the
existence of the design idea!>.
Impacts [Side Effects]: <Give a list of the performance requirements that this design idea will
impact in a more minor way, good or bad>.
Impacts [Costs]: <Give a list of the budgets that this design idea will impact in a major way>.
Impacts [Other Designs]: <Does this design have any consequences with respect to other
designs? Name them at least>.

======================== Impact Estimation/Feedback =======================
For each Scalar Requirement in Impacts [Intended] (see above):
Tag: <Tag name of a scalar requirement listed in Impacts [Intended]>.
Scale: <Scale of measure for the scalar requirement>.
Scale Impact: <Give estimated or real impact, when implemented, using the defined Scale.
That is, given current baseline numeric value, what numeric value will implementing this design
idea achieve or what numeric value has been achieved?>.
Scale Uncertainty: <Give estimated optimistic/pessimistic or real # error margins>.
Percentage Impact: <Convert Scale Impact to Percentage Impact. That is, what percentage
of the way to the planned target, relative to the baseline and the planned target will implement-
ing this design idea achieve or, has been achieved? 100% means meeting the defined Goal/
Budget level on time>.

Figure 7.7
Continued next page

Design Ideas and Design Engineering 217

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH007.3D – 185 – [185–220/36] 29.6.2005
12:41PM

7.10 Summary: The Design Engineering Process

The ‘design engineering process’ is a systematic, rational process of
finding design specifications, which when implemented will satisfy a
balanced set of requirements on time.

The term ‘design engineering’ means a design process based on multi-
dimensional quantified requirements and multiple quantified design
attributes. It requires concurrent use of an implementation process,
like Evo, based on quantified measurement of performance and costs
at frequent evolutionary cycles, and of necessary analysis and correc-
tion to maintain progress towards (potentially adjusted or traded off)
formal and quantified targets.

The selection of design ideas is determined by the need to deliver a set of
specified stakeholder target levels within a set of specified constraint levels.

The design engineering process is really concerned with identifying
optional design ideas and evaluating the alternative possibilities to find

Percentage Uncertainty: <Convert Scale Uncertainty to Percentage Uncertainty #
deviations>.
Evidence: <Give the observed numeric values, dates, places and other relevant information
where you have data about previous experience of using this design idea>.
Source: <Give the person or written source of your evidence>.
Credibility: <Credibility 0.0 low to 1.0 high. Rate the credibility of your estimates, based on the
evidence and its source>.
======================= Priority and Risk Management ======================
Rationale: <Justify why this design idea exists>.
Value: <Name [stakeholder, scalar impacts and other related conditions]: Describe or quantify
the knock-on value for stakeholders of the design impacts>.
Assumptions: <Any assumptions that have been made>.
Dependencies: <State any dependencies for this design idea>.
Risks: <Name or refer to tags of any factors, which could threaten your estimated impacts>.
Priority: <List the tag names of any design ideas that must be implemented before or after this
design idea>.
Issues: <Unresolved concerns or problems in the specification or the system>.
========================== Implementation Control =========================
Supplier: < Name actual supplier or list supplier requirements>
Responsible: <Who in your organization is responsible for managing the supplier relation?>
Contract: <Refer to the contract if any, or the contract template>
Test Plan: <Refer to specific test plan for this design>
Implementation Process: <Name any special needs during implementation>
========================= Location of Specification ========================
Location ofMaster Specification:<Give the intranet web location of this master specification>.

Figure 7.7
Design Specification Template. This is a form to fill out, with <hints in fuzzy brackets>.

218 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH007.3D – 185 – [185–220/36] 29.6.2005
12:41PM

a satisfactory architecture (that is, the sum of all design ideas), which
provides:

. the best fit with the requirements

. early delivery of key results (with high stakeholder values)

. best value to cost ratios and performance to cost ratio, and

. acceptable risks.

The design engineering process may also involve identifying the best
reaction (redesign) to any feedback (good or bad feedback from
actually implementing design ideas in the real system).

The design engineering process cannot usually be done, competitively,
in a single pass. The effects of even a single design idea are too
complex to understand without ‘experience analysis’ from past use
of the idea (see ‘Impact Estimation’, Chapter 9), and especially with-
out actual use on our new system (see Evo, Chapter 10). So it must
normally be expected that the ‘final’ and ‘correct’ design specification
can only be evolved towards (never perfectly or ideally reached) as a
result of multiple feedback-and-change cycles.

Refinement of design can be done in parallel with actual use (by at
least some early stakeholders) of a version of the product. The prac-
tical feedback from this early delivery can be used to improve the
design; probably faster and more correctly than by staying in the
‘design phase’ longer.

A further complication is that as time goes on, both the ‘design
requirements’ and ‘potential and selected design technology’ will
‘expectedly’ change, thus requiring yet another set of cycles of learning
how to satisfy these new, changed requirements. Never perfect, con-
tinuously better, is the watchword.

In terms of ‘Competitive Engineering’ you can always refine the
design to be more competitive. However, there is a point where the
cost and time of refining the design exceeds any competitive benefit,
and it is time to stop designing and to get the product out of the door,
this time around.

Design Policy

Design ideas are only really finally validated when they display
satisfactory attributes in a real system (that is, after successful deliv-
ery in an evolutionary step). Don’t kid yourself that they are ‘final’
before that.

A suggested mental attitude towards design specifications. Don’t believe
any estimates of performance and cost, only reality as measured!

Design Ideas and Design Engineering 219

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH007.3D – 185 – [185–220/36] 29.6.2005
12:41PM

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH008.3D – 221 – [221–260/40] 29.6.2005
12:42PM

Chapter

8

SPECIFICATION QUALITY
CONTROL

How to know how well you
specified

GLOSSARY CONCEPTS

Specification Quality Control (SQC)
Defect Detection Process (DDP)
Defect Prevention Process (DPP)
Specification
Source
Kin
Checklist
Issue
Major Defect
Minor Defect
Checking Rate

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH008.3D – 221 – [221–260/40] 29.6.2005
12:42PM

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH008.3D – 221 – [221–260/40] 29.6.2005
12:42PM

8.1 Introduction: Specification Quality Control

Specification Quality Control (SQC) is the name I shall use to refer to this
method in this text. Within the software community, the term ‘Inspection’
is used. However, it is a poor choice for engineering communities, which
already use ‘inspection’ in another sense during final production line
quality control. SQC is remote from such assembly-line inspections, as it
takes place from the earliest stages of idea specification and has different
organizational impacts (for example, team building and assisting in ‘on
the job’ training).

The primary purpose of SQC is systems engineering process control
through sampling measurement of specification quality. Through
SQC, we can improve systems engineering processes, save project time
and increase systems engineering productivity.

Improving Process

Control of projects, designs, strategies, marketing, selling and buying,
management planning, and programming, all have one thing in com-
mon at least – they rely on ideas specified by people, and read by people.
If those ideas are misunderstood by the reader, incomplete, wrongly
written or out of date, then we are doomed to lose control and be less
competitive, no matter how well we design, plan and implement!

For software, studies have long since shown that a considerable percent-
age (44% at Bellcore (Pence and Hon 1993) and 62% (Thayer, Lipow
and Nelson 1978)) of all bugs in computer programs were not due to
faulty programming. They were due to faulty requirements and design
being handed to the programmers and the testers. In many cases, the
testers, unwittingly, checked that an erroneous specification was ‘cor-
rectly’ programmed! Testing, in this situation, does not solve the
problem: it confirms it. However, SQC can address such problems.

In aircraft design at Douglas Aircraft (now Boeing), ‘engineering order’
faults cost $2,965 each to correct and 30% of engineering orders needed
correction. After SQC was applied in 1987–88, the percentage of faulty
engineering orders fell to 0.5% (Personal Experience). We achieved
similar results in 1989 at Boeing, Renton on all aspects of aircraft design.

The tendency to commit some kind of error, when communicating
complex ideas in writing to other people, is much worse than most
people realize. My own experience in industrial measurement of
defects suggests that technical documents, initially and routinely,
contain at least 20–60, and often far more, ‘major’ engineering
specification defects in each ‘logical’ page (300 non-commentary

Specification Quality Control 223

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH008.3D – 221 – [221–260/40] 29.6.2005
12:42PM

words). Through systematic use of feedback from SQC to specifica-
tion writers, this level can be brought down to well under one
remaining major defect/page (British Aerospace, Eurofighter Project,
Wharton, achieved this in 18 months (Personal Communication)).

Saving Time

Without SQC, a major defect left in a technical specification can cost an
average of 9.3 work-hours to deal with.1 Use of SQC at an early stage
(during writing the specification) would cost only one work hour to
remove it. ‘‘A stitch in time saves nine’’ (or an SQC hour saves nine-
point-three to be exact! (Gilb and Graham 1993)).

Increasing Productivity

The reduction of defects (as a result of using SQC) saves ‘rework’, which
is otherwise about half of all effort in software projects. Raytheon (Haley
et al. 1995) found that software engineering productivity for about a
thousand programmers increased by a factor of 2.7 over a few years of
using SQC (Inspection and Defect Prevention Process).

One major reason for defect reduction is the ‘training effect’ of SQC on
individuals. The number of defects injected by a systems engineer reduces
by about 50% each time they go through an SQC process (Personal
Experience since 1988). Systems engineers rapidly learn to take the rules
seriously. They see that their peers expect them to comply with the rules
and that their work cannot exit, and be ‘finished’, until they reach at least
the exit level for the estimated number of remaining major defects. I have
found that this is as true in software as it is in hardware engineering.

Industrial Usage

The methods needed for quality control (QC) of specifications originated
in the early 1970s within IBM, when they were used under the name of
‘Design and Code Inspections’.2 Since then significant changes have
occurred, resulting in the SQC method described in this book. The most
notable change was the introduction, again within IBM, of the Defect
PreventionProcess (DPP) (Mays 1995). The othermajor change is the shift
to ‘sampling’, rather than 100% checking and trying to clean up defects.

1 As measured on a 1,000 defect sample by (then) Thorn EMI (electronics industry) in
1990. See Section 8.8 and (Gilb and Graham 1993 Page 315: Reeve).
2 Fagan, M. E. 1976. Design and code inspections. IBM Systems Journal. Volume 15.
Number 3. Pages 182–211. Reprinted 1999. IBM Systems Journal. Volume 38. Num-
bers 2 and 3. Pages 259–287. See http://www.research.ibm.com/journals/sj/

224 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH008.3D – 221 – [221–260/40] 29.6.2005
12:42PM

The first large-scale hardware engineering uses of SQC took place at
Douglas Aircraft (1988) and Boeing (1989) under this author’s guid-
ance. In recent years, Siemens, Alcatel and Ericsson have also success-
fully used the method on a large scale (hundreds trained) for total
product development purposes. Hewlett Packard has reported esti-
mated savings due to SQC (some use within hardware product plan-
ning) of $21.5 million and $34 million in 1993 and 1994 respectively
(Grady and Van Slack 1994).

The use of SQC outside of the software area is, as yet, little understood
or appreciated, except by the few corporations who have tried it out
such as Ericsson, Douglas and Boeing. It is time that this industrial
experience was more widespread knowledge. There is little difference
in the specification of software engineering, management planning or
hardware engineering with regard to human specification errors, their
causes and their consequences.

8.2 Practical Example: Specification
Quality Control

Take the simple performance requirement statement:

‘The objective is to get higher adaptability using modular structure.’

Do you see any problems with it? Is it similar to statements you see
every day? Well, if you have read this book this far, you would notice
that it violates some rules we have suggested. Of course, there is
nothing wrong with it, unless we agree that these rules are in force.
For some purposes they should be in force, for others not.

44% due to
Design Errors

14%

30%

100% of all Field Bugs

31% Reduction
due to SQC

Figure 8.1
Due to use of SQC during development of telecommunications software, a 31% reduction
in design errors that caused bugs in the field was measured after 2 releases (Pence and
Hon 1993).

Specification Quality Control 225

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH008.3D – 221 – [221–260/40] 29.6.2005
12:42PM

SQC works by using the formal rules that are in force: a ‘defect’ is a
rule violation. SQC discovers whether people have applied the agreed
rules or not. A specification writer must always know the rules that
apply (and have agreed to them in advance). The specification writer
should welcome any help to follow them. Rules, after all, should be
‘best practice’ rules.

Let us now (for the sake of this example) introduce a few short rules,
which apply to the quality requirement statement above.

Rules For Performance Requirements

Tag: Rules.OBJ.

Clear: They must be unambiguously clear to the intended readers
(not to ‘anyone,’ just the relevant people).

Detail: They must detail complex concepts as a set of elementary
measurable concepts.

Scale: They must specify a scale of measure to define the concept
(all performance attributes are quantifiable).

Quantify: They must specify at least two points of reference on the
defined Scale to define ‘relative’ terms, such as ‘‘higher.’’ These are
called the benchmark and target specifications.

Qualify: Targets must specify exactly ‘when’ a performance level is
to be available. Other qualifier notions, such as ‘where’ and ‘if’
should also bemade explicit, if the target is not elsewhere specified.

Ends: They must not put ‘designs’ in the specification of ‘perfor-
mance requirements.’ Specify the Ends, not the Means.

Source: The source statements for each requirement must be pre-
cisely referenced (for example, <- the contract and marketing
documentation).

Fuzzy: Fuzzy unclear concepts shall be marked with <fuzzy/angle
brackets> to indicate there is room for improvement.

A checker (a person assigned to check a specification and its selected
source documents against these rules) would be obliged to report, for
the performance requirement statement about ‘higher adaptability’,
that all the above rules were violated.

There are, therefore, at least eight defects in the requirement state-
ment. If these defects might have much higher costs later in a project
(if not fixed at specification time), they should be classed as ‘major’
defects. Majors are the defects it pays to fix now, at a tenth of the cost
we would otherwise suffer later. (Fixing majors early is useful, but
preventing their injection is even more profitable.)

Checkers are friendly, confidential personal advisors to the specifica-
tion writer. The checker’s first job is to point out potential problems
for correction before a specification is released to other engineers, or to

226 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH008.3D – 221 – [221–260/40] 29.6.2005
12:42PM

customers. Checking is a service the writer will likely perform, in
return, when their former peer checkers specify something themselves,
and want SQC help. The responsible engineer will take a list of the
checker’s suggested advice regarding ‘potential defects’ (issues) and
consider correcting them. They should address similar defects, outside
the sample checked, as far as necessary, according to the applicable
rules, procedures and source documents. However, it may pay off to
totally rewrite the specification. The specification document ‘Exit
Level’ is based on a general calculation of what is the best project
time-saver. We don’t exit, if cleaning up the specification now saves
the most time, in the long run. The following are the expected results
of a single pass of SQC:

(Note: Multiple passes should be rare.)

1. Based on defects found and corrected and, on an assumed SQC
effectiveness at spotting defects of 50%, a calculation will be made
about the (probable) remaining major defects in the specification
(which is about as many defects as we found – since we cannot
expect to be much better than 50% effective in finding defects). If
these are more than permitted by the exit conditions, the specifica-
tion will not be released. This is because the estimated unfound
remaining majors would cause more loss of time than savings to be
gained, if we let them exit downstream; that is, if we released the
specification immediately.

2. The specification writer will learn about current agreed rules and
their peers’ interpretations of these rules. As a result they are likely,
by my industrial experience, to learn to produce a specification with
half the number of defects next time. (Ultimately, after several SQC
experiences for the writer, about 100 times cleaner – using major
defect reduction as the measure – specification is usually achieved!)

3. The checkers themselves will learn best practice rules and their
peers’ attitudes towards those practices. This will influence the
checkers’ specification work quality.

4. The ‘users’ of the specification will learn to expect (in terms of
their entry condition) a minimum specification quality level (such
as no more than one remaining major defect/page).

5. The SQC team will continuously suggest process improvements to
reduce future major defects. (Poor working processes, training,
tools and the working environment ‘force’ defects on the workforce
according to Deming (Deming 1986)).

6. Project productivity will at least double, mainly due to fighting
fewer defects later (Dion has reported productivity increasing by a
factor of 2.7 (Dion 1993; Haley et al. 1995)).

As a result of SQC we will have data to decide if it pays off to release the
specification to another engineering process, or fight the defects now.

Specification Quality Control 227

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH008.3D – 221 – [221–260/40] 29.6.2005
12:42PM

8.3 Language Core: Specification Quality Control

Basic Definitions (see also Glossary terms)

Specification Quality Control (SQC)

Specification Quality Control (SQC) consists of two main processes:
the Defect Detection Process (DDP) and the Defect Prevention
Process (DPP).

Defect Detection Process

The Defect Detection Process is concerned with document quality,
mainly with identifying defects in the documentation and using this
information to make decisions about how best to proceed with the
main document under SQC – the main specification.

Ideally, though sometimes not done due to the economics of the
situation, a known defect must be removed as soon as possible after
the error has been committed. This is to avoid the high cost of late
removal (at test or in field) of the defect, or to avoid the high cost of its
consequences. ‘‘A stitch in time saves nine.’’

Defect Prevention Process

The Defect Prevention Process is concerned with learning from the
defects found and suggesting ways of improving processes to prevent
them reoccurring in future. The process improvement suggestions are
routed on to the relevant process owner for further consideration. ‘‘An
ounce of prevention is worth a pound of cure.’’

Here are some other basic SQC concepts.

Issue

An issue is a perceived defect in a document. It is a non-confrontational
way for a checker to say, ‘‘I think I may have identified a defect.’’

Defect Detection
Process (DDP)

Defect Prevention
Process (DPP)

Specification Quality Control (SQC) Process

228 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH008.3D – 221 – [221–260/40] 29.6.2005
12:42PM

Defect

A failure to observe a formal, written, required rule. It is not a personal
opinion or personal taste. It is failure to observe a group norm, or
required best practice.

Major defect

A major defect is a defect (rule violation) which, if not fixed at the
requirements or design stage of specification, will possibly grow
approximately an order of magnitude or larger in ‘cost-to-find-and-
fix’ and/or damage potential. It is often intentionally written with a
capital ‘M’. Minor defects tend not to be economic to identify or fix
(but you sometimes have to identify them to determine that they are
indeed minor and not, major).

Page

A logical page, as opposed to a physical page, is defined as a specific
number of non-commentary words. If no other definition is given
then use ‘300 non-commentary words’ for each logical page (default
‘volume’ definition). This ensures measurements of checking rates and
defect densities are consistent.

Checking Rate

The checking rate is the average speed with which an individual
checker searches a specification for defects, allowing time for checking
it against rules, sources, kin documents and checklists. This is a critical
factor to control for effective checking. You have to go surprisingly
slowly to raise your checking effectiveness from 5% to 50%. (For
example: one page an hour!)

Optimum Checking Rate

The optimum checking rate is the rate, which gives the highest
checking productivity (effectiveness in finding majors). It is the check-
ing speed that in fact works best on a given document type for an
individual checker to do their assigned tasks. It is found by establish-
ing the most effective average historical checking rate in terms of
finding major defects. The optimum checking rate is usually in the
range of 300 non-commentary words/hour (plus 300/minus 270).
This is used as a guide for team planning. Individuals need to
tune in to their personal optimum rate, which varies from this average.

Specification Quality Control 229

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH008.3D – 221 – [221–260/40] 29.6.2005
12:42PM

The major trick to going at this ‘slow’ rate is to sample, not to attempt
100% checking of all pages and consequent ‘defect clean up’.

Remaining Major Defects

The remaining major defects are the estimated remaining major
defects/‘volume’ measure (which could be a page, a technical draw-
ing or an entire specification) given for a sample or an entire
specification. It is estimated based on ‘total found’ and ‘known %
effectiveness.’

Checklist

A ‘checklist’ is a list of questions, which can be asked about a
document’s contents by a checker, with a view to improving the
effectiveness of that checker in finding major defects. Checklist
questions are always directly derived from individual official rules.
They are not allowed to be the rules, or to change the rules, just to
interpret them.

Rule

A rule is a standard for the production of a written process output. A
rule can be used to judge the objective quality (‘defect-freeness’
according to current rules) of a written process output. Violations of
rules are defined as ‘defects.’

Rules are often grouped into sets according to the type of standard,
which they are setting (for example, ‘specification clarity’ or ‘specifica-
tion consistency’).

Main Specification

The main specification is one of potentially many documents involved
in a single SQC. However, it distinguishes itself as the one we are
trying to get formal ‘exit’ for. Exit (acceptable exit level) is based
primarily on the specification’s quality with respect to the official
systems engineering standards (rules) for writing it.

Source Documents

The source documents are the ‘parents’ used to produce a specific
main specification. For example, contracts are typical sources for

230 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH008.3D – 221 – [221–260/40] 29.6.2005
12:42PM

requirements. Requirements are a source for design. Requirements
and design are sources for Impact Estimation. Design is source for
planning, estimating and construction or programming. Change
requests are sources for an updated specification.

Kin Documents

‘Offspring of the same ‘parent’ (source) documents are ‘kin.’ For
example, test plans, source code and user handbooks could all be derived
from the same requirements or the same design. The use of kin docu-
ments is that they can serve as information to perform defect checking
in SQC.

8.4 Standards: Specification Quality Control

Rules are standards, and are central to the SQC process; specifications
must be checked against their agreed specification rules. However, the
rules to be used depend on the specification type, so we won’t attempt
to list them here. The rules given in other chapters of this book are
suitable examples of such rules (but they are by no means a complete list).

Here is a list of guidelines for assessing whether your overall SQC
process is functioning correctly.

Guidelines for assessing functioning of overall SQC

Economic: SQC must always make economic sense. If SQC is not
saving in the order of 10 hours for every hour spent on SQC, then
your SQC process should probably be modified or abandoned.

SQC Champion: There must be an SQC champion within the
organization. (At the very least, a nominated person responsible for
SQC; an SQC process owner.)

Team Leaders: There must be a list of current SQC team leaders. It
should show that there is a sufficient number of team leaders within
the organization and also that the team leaders are trained, tested and
‘certified’ to ensure they know what they are doing.

Statistics: The SQC statistics must be up-to-date on the SQC data-
base.

Meetings: All meetings must be of maximum length of two hours
(tiredness reasons). If more time is needed, schedule a set of such
meetings (but do consider the possibility of using sampling).

Specification Quality Control 231

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH008.3D – 221 – [221–260/40] 29.6.2005
12:42PM

Checkers: Unless you are training novices, the number of check-
ers at a meeting should be five or less. Two or three people is
typically most cost-effective, Four to five is generally more
‘effective.’3

Checking Rate: All checking must be carried out near the relevant
optimum checking rate. This rate will vary by document type and
organization. It is about 1 page/hour.

Condition: Entry and exit conditions must be taken seriously. They
are there to save you wasting time. The number of remaining major
defects/page for successful exit must be ultimately less than one (major
defect/page).

Standards: There must be an up-to-date (intranet) ‘library’ of official
rules, checklists and forms.

Upstream Pollution: The number of major issues identified by
your team in source specifications, which have just previously-
exited SQC, should be approximately 15% of the total number
of logged issues. Otherwise, this is a sign that your team is not
taking the ‘second-round’ opportunity to find source defects,
seriously.

Forms

SQC uses four main forms: the Master Plan, the Editor Advice Log,
the Data Summary and the Process Meeting Log. There are examples
of these forms filled in, in Figures 8.2, 8.3, 8.4 and 8.5. Blank forms
are given in Section 8.9.

Note forms are a ‘procedure’ (in the format of the form) for gathering
data. Most of our clients have their own local variation of the forms
and automate them (usually on an intranet web site).

3 The original evidence for this came from research performed by Søren Nielsen in the
Danish electricity industry (Danish Technical Institute, Lyngby, 1987; cited in Gilb and
Graham 1993), and was confirmed by further research at Jet Propulsion Labs by John
Kelly (Kelly 1990a; 1990b). Optimum effectiveness (number of unique issues per
checker) was achieved with teams of 4–6 people, optimum efficiency (cost per unique
issue found) with teams of 2–4 people. The recommended team size of 4–5 people
achieves the best compromise between these factors. It was Edward Weller, analysing
data from more than 6,000 inspection meetings conducted at Bull HN (Weller 1993),
who reported that ‘‘four-person teams were twice as effective . . . as three person teams.’’
Also included in Wheeler, Brykczynski and Meeson (1996).

232 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH008.3D – 221 – [221–260/40] 29.6.2005
12:42PM

S
Q

C
 T

ea
m

 M
as

te
r

P
la

n
S

Q
C

 ID

 5

7

T
ea

m
 L

ea
de

r
Lu

cy
 J

on
es

 M
ai

l/t
el

. c
od

e
33

22
W

rit
er

(s
)

S
am

 M
ur

ry
 M

ai
l/ T

el
. C

od
e

33
21

 D
at

e
S

Q
C

 w
as

 re
qu

es
te

d
20

 J
un

 2
00

0
S

pe
c.

 T
itl

e
P

en
n

M
ar

ke
tin

g
P

la
n

T
ot

al
 p

hy
si

ca
l p

ag
es

 4
 V

er
si

on
 0

.1
In

te
nd

ed
 p

ur
po

se
s

of
 th

is
 S

Q
C

 Q
C

E
nt

ry
 C

on
di

tio
ns

 w
hi

ch
 a

pp
ly

 (t
ag

s)
 P

en
n

O
bj

ec
tiv

es
 IN

S
P

T
'D

 [!
] E

C
(G

en
er

ic
 E

nt
ry

 C
on

di
tio

n
S

I p
g.

 6
4–

66
)

C
ur

re
nt

 E
nt

ry
 S

ta
te

s
(m

et
, w

ai
ve

d)

 M
et

 W
hy

?
E

xi
t C

on
di

tio
ns

 w
hi

ch
 w

ill
 b

e
ap

pl
ie

d
(t

ag
s)

 E
di

t /
C

R
 /R

em
D

ef
ec

ts
 [

] X
C

(G
en

er
ic

 E
xi

t C
on

di
tio

ns
 S

I p
g.

 2
02

)

M
ee

tin
gs

K
ic

ko
ff

D
at

e

3
Ju

l 2
00

0

 L
oc

at
io

n
 R

oo
m

 4

S
ta

rt
 T

im
e

10
.3

0
 E

nd
 ti

m
e

11
.0

0
S

pe
c.

 D
at

e

 1
0

Ju
l 2

00
0

 L
oc

at
io

n
 R

oo
m

 4

S
ta

rt
 T

im
e

10
.0

0
 E

nd
 ti

m
e

12
.0

0
P

ro
ce

ss
: D

at
e

10
 J

ul
 2

00
0

 L

oc
at

io
n

 R
oo

m
 4

S

ta
rt

 T
im

e
12

.1
5

 E
nd

 ti
m

e
12

.4
5

D
oc

um
en

ts
 (s

pe
ci

fie
d

pa
rt

s
to

 b
e

us
ed

 b
y

ch
ec

ke
rs

)
sa

m
pl

es
 o

r c
he

ck
(s

)
S

pe
ci

fic
at

io
n(

s)
P

en
n

M
ar

ke
tin

g
P

la
n

(a
ll

4
pa

ge
s)

P
ot

ts
 M

ar
ke

tin
g

P
la

n
(P

ag
es

 2
,3

)
P

en
n

O
bj

ec
tiv

es
 (P

ag
es

 2
–5

)

R
ul

es
: G

en
er

ic
 [

] S
I 4

24
-5

 o
r

in
 h

ou
rs

 R

ul
es

.G
R

 S

pe
ci

fic

R
ul

es
.M

P

C
he

ck
lis

ts
: F

or
 S

pe
c.

C

he
ck

.M
P

F
or

 o
th

er
 D

oc
um

en
ts

 C
he

ck
.O

B
J

T
ea

m
 S

et
up

:

T
ea

m
M

em
be

r
N

am
e

T
el

.
E

xt
.

S
Q

C
 R

ol
e

S
of

t.
In

sp
.

P
ag

e
36

2-
73

,
e.

g.
 E

di
to

r,
 C

he
ck

er

S
pe

ci
fic

at
io

n
P

ar
t

(T
he

 S
pe

ci
fic

 s
ec

tio
n

or
pa

ge
s

of
 th

e
do

cu
m

en
t)

S
ou

rc
e

D
oc

um
en

ts
an

d
S

ec
tio

ns
 y

ou
ar

e
re

sp
on

si
bl

e
fo

r

R
ul

es
 &

C
he

ck
lis

ts

Je
nn

y
C

la
ire

26
26

C
he

ck
er

P
en

n
P

ag
es

 2
–3

P
ot

ts
-M

P
R

ul
es

.G
R

,
R

ul
es

.M
P

,
C

he
ck

.M
P

T
om

F
ra

nk
s

25
33

C
he

ck
er

P
en

n
P

ag
es

 2
–3

P
ot

ts
-M

P
 S

ec
tio

n
2

R
ul

es
.M

P
C

he
ck

.M
P

R
ul

es
.M

P
C

he
ck

.M
P

H
ar

ry
M

at
th

ew
s

25
22

C
he

ck
er

P
en

n
P

ag
e

1,
4

P
en

n-
O

B
J

P
ot

ts
-M

P

S
am

M
ur

ry
33

21
W

rit
er

 C
he

ck
er

,
E

di
to

r
P

en
n

P
ag

e
1,

4
P

en
n-

O
B

J
P

ot
ts

-M
P

R
ul

es
.G

R
C

he
ck

.O
B

J
Lu

cy
Jo

ne
s

33
22

T
ea

m
 L

ea
de

r
–

–
–

C
he

ck
in

g
P

ro
ce

du
re

 &
ot

he
r

ta
ct

ic

C
he

ck
in

g
E

ffo
rt

 in
 h

r.

P
C

K
 P

C
C

 P
C

L
P

C
B

P
C

K
 P

C
C

 P
C

L
P

C
B

P
C

K
 P

C
C

 P
S

L
P

C
B

P
C

K
 P

C
C

 P
O

L
P

C
B

2 2 2 2

P
LK

 P
LC

–

R
ec

om
m

en
de

d
A

ve
ra

ge
 T

ea
m

 C
he

ck
in

g-
R

at
es

, S
Q

C
 G

oa
l a

nd
 S

tr
at

eg
y

N
um

er
ic

 S
Q

C
 G

oa
l,

se
t d

ur
in

g
ki

nd
 o

ff
S

tr
at

eg
y

to
 m

ee
t S

Q
C

 G
oa

l

O
pt

im
um

 C
he

ck
in

g
R

at
e,

 fo
r

th
is

 ty
pe

 o
f s

pe
ci

fic
at

io
n

is
 1

 p
ag

es
 p

er
 h

ou
r,

of
 n

on
-c

om
m

en
ta

ry
 te

xt
.

S
pe

c
m

ee
tin

g
ch

ec
ki

ng
-r

at
e:

 2
 p

ag
e(

s)
 (

30
0

w
or

ds
, N

on
-C

om
m

en
ta

ry
)

pe
r

ho
ur

(o
pt

im
um

 r
at

e
of

 c
he

ck
in

g
du

rin
g

th
e

S
pe

c
m

ee
tin

g)

Lu
cy

 J
on

es
 th

is
 is

 th
e

en
d

of
 th

e
M

as
te

r P
la

n.

In

di
vi

du
al

 C
he

ck
er

 D
at

a
C

ol
le

ct
io

n
(f

ill
ed

 in
 b

y
ea

ch
 c

he
ck

er
, a

fte
r c

he
ck

in
g

an
d

be
fo

re
 th

e
S

pe
c.

 m
ee

tin
g)

A
ct

ua
l w

or
k-

ho
ur

s
(t

en
th

s)
 s

pe
nt

:

N

o.
 o

f (
30

0w
 N

C
)

P
ag

es
 c

he
ck

ed
 a

t o
pt

im
um

 r
at

e:
M

aj
or

 is
su

es

 [

in
cl

. E
xx

x-
M

aj
or

s
(p

ro
je

ct
 th

re
at

)

],

 m
in

or
 is

su
es

P
ro

ce
ss

 im
pr

ov
em

en
t s

ug
ge

st
io

ns

 ?

s
of

 in
te

nt
 (

to
 a

ut
ho

r)
M

y
C

he
ck

in
g

R
at

e
w

as
:

 P
ag

es
 / h

ou
r.

H
ow

 d
oe

s
th

is
 d

ev
ia

te
 fr

om
 y

ou
r p

la
nn

ed
 ra

te
?

W

hy
?

an

d
of

 In
di

vi
du

al
 D

at
a

C
ol

le
ct

io
n

E
xa

m
pl

e
of

 a
 F

ill
ed

-In
 M

as
te

r
P

la
n

M
as

te
r

P
la

n

 G

ilb

Fi
g
ur
e
8.
2

Fi
lle

d
-in

M
a
st
e
rP

la
n.

Specification Quality Control 233

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH008.3D – 221 – [221–260/40] 29.6.2005
12:42PM

S
Q

C
 ID

57

E
xa

m
pl

e
of

 a
 F

ill
ed

-In
 E

di
to

r
A

dv
ic

e
Lo

g

D
at

e
10

 J
ul

 2
00

0
S

ta
rt

 ti
m

e
10

00
.

E
nd

 ti
m

e
12

00
.

P
ag

e
 1

 o
f

12
Ite

m
N

o.
D

oc
um

en
t

R
ef

er
en

ce
 T

ag
P

ag
e

Li
ne

 o
r

T
ag

E
xa

ct
 L

oc
at

io
n

T
yp

e
of

 It
em

C
he

ck
lis

t o
r

R
ul

e
T

ag
S

ou
rc

e
In

co
ns

is
te

nc
y

an
d/

or
 N

ec
es

sa
ry

 D
es

cr
ip

tio
n

P
en

n

P
en

n

P
en

n

P
en

n

P
en

n-
O

B
J

P
en

n

P
en

n

P
en

n

P
en

n

1
4

–
M

aj
or

M

in
or

?
Im

p.

 N
ew

M
aj

or

M
in

or
?

Im
p.

 N

ew
M

aj
or

M

in
or

?
Im

p.

 N
ew

M
aj

or

M
in

or
?

Im
p.

 N

ew
M

aj
or

M

in
or

?
Im

p.

 N
ew

M
aj

or

M
in

or
?

Im
p.

 N

ew
M

aj
or

M

in
or

?
Im

p.

 N
ew

M
aj

or

M
in

or
?

Im
p.

 N

ew
M

aj
or

M

in
or

?
Im

p.

 N
ew

M
aj

or

M
in

or
?

Im
p.

 N

ew

S
IM

P
LE

 G
R

2
N

o
br

ea
kd

ow
n

fo
r f

ig
ur

es

1
5

–
S

O
U

R
C

E
 G

R
4

La
ck

 o
f S

ou
rc

e
In

fo

1
5-

6
–

C
LE

A
R

 G
R

N
ot

 U
nd

er
st

oo
d

1
-

D
ia

g
I

IN
C

O
N

S
IS

TE
N

T
G

R
 1

1
P

en
n-

O
B

J
sh

ow
s

ad
di

tio
na

l
in

pu
ts

3
15

A
fte

r
“(

”
C

LE
A

R
 G

R
1

N
ot

 U
nd

er
st

oo
d

1
30

–
N

ot
 c

le
ar

 if
 S

co
tla

nd
 w

as
co

ns
id

er
ed

?

2
16

–
M

P
1

P
ro

du
ct

 R
ef

 fo
r

fu
lle

r
de

sc
.

is
 m

is
si

ng

2
22

–
M

P
4

N
o

pr
om

ot
io

n
in

fo

2
22

–
M

P
5

P
ro

je
ct

 m
gr

 A
ut

ho
rit

y

1 2 3 4 5 6 7 8 9 10
2

29
–

C
H

E
C

K
 O

B
J.

3
Q

ua
lif

ie
rs

 fo
r

U
S

A
B

IL
IT

Y
in

ad
eq

ua
te

S
ub

to
ta

ls
:

N
ew

 It
em

s
fo

un
d

du
rin

g
th

e
S

pe
c.

 M
ee

tin
g

10
.

M
aj

or
 is

su
es

 lo
gg

ed
 9

. M
in

or
 is

su
es

 lo
gg

ed
 –

.

 G

ilb

O
cc

ur
s

E
di

to
r A

ct
io

n
(d

ur
in

g
ed

iti
ng

)

7
B

re
ak

do
w

n
of

 fi
gu

re
s

fr
om

 n
ot

es
 e

nt
er

ed
.

3
S

ou
rc

es
 q

uo
te

d.

R
ew

rit
te

n

P
en

n-
O

B
J

co
rr

ec
t.

C
or

re
ct

ed
.

C
ha

ng
e

R
eq

ue
st

 o
n

P
en

n-
O

B
J

C
or

re
ct

ed
. S

co
tla

nd
 h

ad
 b

ee
n

ru
le

d
ou

t i
n

P
ha

se
 I

R
ef

. t
o

P
ro

du
ct

 D
es

c.
 a

dd
ed

.

R
ef

. t
o

P
ro

m
ot

io
n

P
la

n
ad

de
d.

R
ej

ec
te

d
m

or
e

se
ni

or
 m

gt
de

ci
de

.

C
ha

ng
e

R
eq

ue
st

 o
n

P
en

n-
O

B
J

E
di

to
r

A
dv

ic
e

Lo
g

?
Q

ue
st

io
ns

 o
f I

nt
en

t l
og

ge
d

1
Im

pr
ov

em
en

t s
ug

ge
st

io
ns

 lo
gg

ed
 0

P
en

n-
O

B
J

.
.

Fi
g
ur
e
8.
3

Fi
lle

d
-in

Ed
ito

rA
d
vi
c
e
Lo

g
.

234 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH008.3D – 221 – [221–260/40] 29.6.2005
12:42PM

E
xa

m
pl

e
of

 a
 F

ill
ed

-In
 D

at
a

S
um

m
ar

y

D
at

a
S

um
m

ar
y

ba
se

d
on

 S
I p

ag
e

40
3

(Im
pr

ov
ed

)

T
ot

al
 lo

gi
ca

l (
30

0
N

on
-C

om
m

en
ta

ry
 w

or
ds

/p
ag

e)
 C

he
ck

ed
 P

ag
es

 4
 o

f 4
.

D
at

e/
tim

e:
 S

Q
C

 R
eq

ue
st

ed
 2

0
Ju

n
20

00
. D

at
e

E
nt

ry
 c

rit
er

ia
 p

as
se

d
 2

0
Ju

n
20

00
.

S
Q

C
 ID

 5
7.

 D
at

e
10

 J
ul

 2
00

0
T

ea
m

 L
ea

de
r L

uc
y

Jo
ne

s.
 C

on
ta

ct
 N

um
be

r 3
32

2
S

pe
ci

fic
at

io
n

R
ef

er
en

ce
 P

en
n

M
ar

ke
tin

g
P

la
n

C
he

ck
er

R
ep

or
t

P
ag

es
S

tu
di

ed
(P

)

C
he

ck
in

g
ho

ur
s

(t
)

M
aj

or
 +

 S
M

is
su

es
M

in
or

 Is
su

es
Im

pr
ov

em
en

ts
?’

s
no

te
d

C
he

ck
in

g
R

at
e

(P
/t)

-
1st

 -
2

2.
5

45
 +

 1
–

3
2

0.
8

-
2nd

 -
2

2.
0

60
 +

 0
–

0
0

1.
2

-
3rd

 -
2

2.
0

53
 +

 0
–

1
0

1.
4

-
4th

 -
2

1.
5

35
 +

 0
–

0
0

1.
0

-
5th

 -
8.

0
A

ve
ra

ge
 T

ea
m

 C
he

ck
in

g-
ra

te
 P

/t.
 =

1.
1

C
H

E
C

K
IN

G
 D

A
TA

 (t
o

be
 re

po
rt

ed
 o

ra
lly

 d
ur

in
g

th
e

en
tr

y
pr

oc
es

s
fo

r S
pe

c.
 m

ee
tin

g)

M
aj

or
 +

 S
M

is
su

es
 lo

gg
ed

M
in

or
is

su
es

lo
gg

ed

Im
pr

ov
em

en
t

su
gg

es
tio

ns
?s

 o
f i

nt
en

t
N

ew
 is

su
es

 fo
un

d
in

 th
e

m
et

tin
g

10
5

+
1

–
4

2
3

S
P

E
C

IF
IC

A
TI

O
N

 O
N

 M
E

E
TI

N
G

 S
U

M
M

A
R

Y
 (

A
ll

ite
m

s
lo

gg
ed

 d
ur

in
g

th
e

S
pe

c.
 m

ee
tin

g)

FI
N

A
L

FI
N

D
IN

G
S

 A
S

 R
E

P
O

R
TE

D
 B

Y
 E

D
IT

O
R

M
aj

or
 +

 S
M

 d
ef

ec
ts

m
in

or
 d

ef
ec

ts
C

ha
ng

e
R

eq
ue

st
s

85
 +

 1
14

25

E
X

IT
 R

E
S

U
LT

S

D
id

 th
e

do
cu

m
en

t E
xi

t t
he

 S
Q

C
 E

xi
t C

rit
er

ia

D
id

 th
e

S
Q

C
 P

ro
ce

ss
 m

ee
t t

he
 S

Q
C

 E
xi

t C
rit

er
ia

:

Y
es

 D
at

e
11

 J
ul

 2
00

0
C

om
m

en
t

N
o

D
at

e
11

 J
ul

 2
00

0
C

om
m

en
t

E
ffi

ci
en

cy
(M

aj
/w

k-
hr

)
85

/2
1.

6

E
st

 r
em

ai
ni

ng
M

aj
 +

 S
M

de
fe

ct
s/

pa
ge

21

E
st

. e
ffe

ct
iv

en
es

s
(%

 m
aj

 d
ef

ec
ts

fo
un

d/
pa

ge
)

50
%

E
S

T
IM

A
T

E
S

(1
)

P
la

nn
in

g-
tim

e
(t

o
pl

an
th

at
 S

Q
C

)
1.

0
ho

ur
s

(t
en

th
s)

ho
ur

s
(t

en
th

s)

ho
ur

s
(t

en
th

s)

(2
) E

nt
ry

-t
im

e
(t

o
ch

ec
k

th
at

 e
nt

ry
 c

rit
er

ia
 is

 m
et

.)
0.

1

(3
)

K
ic

ko
ff

M
ee

tin
g

 W
or

k
H

ou
rs

 (N
O

T
 c

lo
ck

 h
ou

rs
)

2.
5

D
at

a
S

um
m

ar
y

(6
)

E
di

t-
tim

e
3.

0
(w

or
k-

ho
ur

s
in

te
nt

hs
)

(w
or

k-
ho

ur
s

in
te

nt
hs

)
(w

or
k-

ho
ur

s
in

te
nt

hs
)

(w
or

k-
ho

ur
s

in
te

nt
hs

)
(w

or
k-

ho
ur

s
in

te
nt

hs
)

(w
or

k-
ho

ur
s

in
te

nt
hs

)

(7
)

E
di

t A
ud

it
tim

e
0.

2

(8
)

E
xi

t-
tim

e
0.

1

(9
)

C
on

tr
ol

-t
im

e
=

1
+

2
+

3
+

7
+

8
3.

9

(1
0)

 D
ef

ec
t-

re
m

ov
al

-t
im

e
=

11
 +

 6
 +

 7
 +

 8
24

.9

P
ro

ce
ss

 M
ee

tin
g

tim
e

2.
5

E
D

IT
, E

di
t A

ud
it,

 E
X

IT
, P

ro
ce

ss
 M

ee
tin

g
A

N
D

 F
IN

A
L

C
O

S
T

S
U

M
M

A
R

Y

S
P

E
C

IF
IC

A
TI

O
N

 M
E

E
TI

N
G

 D
A

TA
(f

ill
 in

 a
t t

he
 e

nd
 o

f t
he

 S
pe

c.
 m

ee
tin

g)

(N
) N

um
be

r o
f p

eo
pl

e
5

(p
eo

pl
e)

(D
) L

og
gi

ng
-d

ur
at

io
n

2.
0

(c
lo

ck
 h

ou
rs

 in
te

nt
hs

)

(5
)

Lo
gg

in
g-

tim
e

(N
) *

 (D
)

10
.0

(w
or

k-
ho

ur
s

in
te

nt
hs

)

(1
1)

 D
et

ec
tio

n-
tim

e
(P

la
n

+
K

ic
ko

ff
+

C
he

ck
 +

 L
og

)
(1

) +
 (2

) +
 (3

) +
 (4

) +
 (5

)
21

.6
(w

or
k

ho
ur

s
in

te
nt

hs
)

Ite
m

-L
og

gi
ng

 r
at

e
11

5/
12

0
(it

em
s

/ m
in

ut
e)

S
pe

c-
m

ee
tin

g-
ra

te
2

(p
ag

es
 p

er
 h

ou
r

ch
ec

ke
d)

 G

ilb

Fi
g
ur
e
8.
4

Fi
lle

d
-in

D
a
ta

Su
m
m
a
ry
.

Specification Quality Control 235

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH008.3D – 221 – [221–260/40] 29.6.2005
12:42PM

Item Issue
Reference

Cause Class
(tick1)

Root Cause
Ideas

Improvement
Ideas

1

Communication
Oversight

Transcription
Education

Communication
Oversight

Transcription
Education

Communication
Oversight

Transcription
Education

Communication
Oversight

Transcription
Education

Communication
Oversight

Transcription
Education

Communication
Oversight

Transcription
Education

Communication
Oversight

Transcription
Education

Lack of importance
attached to such

information

Have a header
page insisting on

such info

2 15
New Legislation

has not been
published

Send out e-mail
to all managers in

Division

3 33 Only partially
transferred

Insist on use
of one master

4

5

6

7

Process Meeting Log

Team Leader Lucy Jones Date 10 Jul 2000 SQC ID 57 Page 1 of 1

2

8

9

10

Communication
Oversight

Transcription
Education

Communication
Oversight

Transcription
Education

Communication
Oversight

Transcription
Education

1215 1245 30 Mins. 5 People 2.5 Workhours

 Gilb
Start Time Stop Time Duration No. People Total Cost

→

→

→
.

Figure 8.5
Filled-in Process Meeting Log.

236 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH008.3D – 221 – [221–260/40] 29.6.2005
12:42PM

SQC Process Roles and Responsibilities

An efficient team (most major defects/work-hour) uses 2 or 3 people in
total. An effective team (most major defects/page) uses a maximum of 3
to 5 people in total.

Team Leader

A team leader is responsible for managing an SQC process. The team
leader is responsible for knowing SQC thoroughly and helping the
team members to perform. They follow the ‘best-practice’ SQC
processes. An SQC team leader is normally trained for about a week,
and is then formally approved to practice by virtue of their practical
ability and continued correct practice. Inadequate SQC team leader
training leads to failure of the SQC process (Grady and Van Slack
1994).4

Checker

Checkers are primarily ‘consultants to the writer’ and their detailed
knowledge of the defectiveness of the writer’s work is confidential.
Almost all engineering team members work as checkers on occasion,
including the writer and probably the team leader. (The team leader
might choose to be a ‘non-playing captain’ of the team. They would
not check in order to focus their time on the team leader responsibility
or because they were not technically capable in the specification
‘language.’)

Checkers are SQC team members who actively check a set of
documents: the main specification, its source specifications, kin
specifications, the rules, checklists and procedures. They focus on
using the checklists and rules to find major defects. Exactly which
documents a specific checker uses, and what they check for, is
determined by the role or roles assigned to them by the team
leader.

Checkers are also invited to submit specific comment on possible
improvements to the process and the process standards (procedures,
rules, entry conditions, exit conditions and forms). They will, hope-
fully, get some insights during their checking work (for example,
about the need for better rules).

4 Grady reported that HP failed to achieve results from 1983 to 1988 until they properly
trained their team leaders on a week-long course (designed and held, as cited there, by this
author). This article is reproduced in Wheeler, Brykczynski and Meeson (1996).

Specification Quality Control 237

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH008.3D – 221 – [221–260/40] 29.6.2005
12:42PM

Writer: Also Known as Author

The writer is the person currently responsible for writing or updating
a specification. The SQC process serves the writer primarily: in con-
fidence. SQC serves the organization secondarily.

Editor

The editor is usually the same person as the writer. The editor is the
person, who takes over the issues in the Editor Advice Log, decides
(based on standards) what action is required and carries it out. Some
issues will be defects and need fixing. Some issues will require clari-
fication. Some issues will be rejected and others will require change
requests to other documents to be raised. The Editor Advice Log can
be updated with the editor’s decisions.5

In extreme cases, but unfortunately all too frequently, the defect
density found (for example 90 majors in a page) will effectively spell
out the fact that ‘burning’ the work and completely rewriting it will be
more cost-effective.

Scribe

The scribe writes up the Editor Advice Log or other team notes at
an SQC meeting. This can be any one of the team members. By
default, the team leader will scribe. ‘Who scribes’ is not a critical
decision.

Others

In a larger organizational setting, there are ‘players’ outside the
team who support the SQC process. These include quality manage-
ment, SQC process champions, process owners (for both SQC
processes and the work processes, for example, ‘Requirement pro-
cess owner’), senior SQC team leaders, SQC process trainers and
engineering data analysts (perhaps specialized in SQC data statis-
tics). When the SQC process is applied to perform specification
content reviews, the participants will be senior staff expected to use
judgment and to take responsibility for the consequences of their
approval.

5 There are many ways to report what editing action has been undertaken and any
suitable method is fine.

238 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH008.3D – 221 – [221–260/40] 29.6.2005
12:42PM

8.5 Process Description: Specification
Quality Control

Process: Specification Quality Control

Tag: Process.SQC.

Version: October 7, 2004.

Owner: TG.

Status: Draft.

Note: See (Gilb and Graham 1993) for more detail on the sub-
processes. All sub-processes are DDP unless marked as DPP.

Entry Conditions

E1: The specification writer must have requested the SQC hoping to
get help and exit validation for the specification.

E2: A team leader for the SQC is found from amongst the ‘approved
team leaders’ group.

E3: All relevant documents (main specification, kin documents, source
documents, rules, checklists and forms) are available and ideally have
successfully exited SQC – apart from the main specification!

SQC Sub-Processes

Entry

The team leader ensures that the SQC entry conditions are met. This
includes obtaining the relevant documents and checking their status.
Entry conditions are evaluated during the Planning phase.

Planning

The team leader produces the master plan for the SQC (about 1
hour’s work). This involves deciding what material within the speci-
fication is to be sampled, what documents are to be included, what
rules must be used, who is going to be on the team and what their
roles are. The optimum checking rate is determined based on history.

SQC Strategy

The team leader decides the purpose(s) of this SQC and ensures a
suitable overall SQC strategy. Again this is evaluated during Planning.

Specification Quality Control 239

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH008.3D – 221 – [221–260/40] 29.6.2005
12:42PM

Kickoff

The team meets at a Kickoff meeting, where the team leader makes sure
every member knows what they need to know about the SQC process
and the project documents, and that they are committed to working the
plan as a team. The team may approve a suggested ‘quantified goal’ and
‘appropriate strategy’ to meet it (a DPP component).

Checking

The teammembers individually carry out their assigned defect-search roles
at their self-adjusted optimum checking-rate, looking for major defects.
They collect data about the cost and result of their personal checking
activity. This process will typically, for a sample of about two logical pages,
take two hours for each person. Checkers will ask the team leader for help
if necessary. They will also report to the team leader any unusual or serious
problems they discover that might impact the future course of the SQC
process, for example, that the number of issues (potential defects) discov-
ered is sufficiently large to consider abandoning the SQC.

Specification Meeting

This is a team meeting (real or virtual) of up to two hours duration. The
duration and meeting content depend on data collected from Checking.

. Checkers’ Report: At the beginning of the specification meeting,
checkers report their data from Checking. The team leader evaluates
this data and makes decisions about how the meeting and the rest of
this SQC process should proceed. The meeting may be cancelled or
modified in content and duration.

. Issue Logging: The checkers report their issues, mainly potential
majors, which can be in any of the participating documents. A scribe
logs issues in the Editor Advice Log. There should be no discussion
concerning the issues discovered, just unconditional logging of the
issue (the rule violation and its location in the specification). Checkers
may also make process improvement suggestions (Note: This is part of
the DPP process), and log technical ‘questions of intent’ to the writer.
Issue logging within a specification meeting takes up to 30 minutes.

. Double Checking: If it is desired that additional defects are found, then
double checking at the experienced specification meeting6 optimum
checking rate will be carried out during the meeting. This identifies

6 This rate is similar but may vary by about 30% from the optimum rate average found
for individual checking activity. In addition, it is a group activity rate and is not directly
tunable to single individuals. Of course, single individuals will exploit the given time
more or less effectively, depending on their personal ability and motivation.

240 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH008.3D – 221 – [221–260/40] 29.6.2005
12:42PM

about 15% additional major defects and adds about 1.5 hours to the
meeting. This extra checking is only useful in ‘cleanup mode,’ not
when sampling and measuring to determine exit (normal mode).

Process Meeting

After the specification meeting and a short break, the team optionally
may spend up to 30 minutes, analyzing up to 10 logged potential
major defects. For each chosen potential defect, one minute is spent
describing the issue, one minute is spent brainstorming possible root
causes and one minute is spent brainstorming preventative cures. This
data will later be recorded in a quality assurance (QA) database as
inputs (‘grass root insights’: suggestions, hints, ideas) to the organiza-
tion’s more-systematic and formal process improvement specialists.
(Note: A Process Meeting is part of the DPP process.)

Edit

The editor (usually the specification writer) takes over the ‘Editor
Advice Log’, which consists of the issues (that could warrant correc-
tion or action) logged at the specification meeting. The editor exam-
ines the logged issues, determines how to resolve them and then at
least fixes the issues considered to be major defects. The editor may
discover additional defects and should make corrections to any majors
identified outside the sample checked. Other reasonable action is
taken, such as sending out change requests to owners of other docu-
ments. An extreme edit is a full rewrite according to all rules.

Edit Audit

A process carried out by the team leader to verify that a reasonable and
complete editing job has been done. Consequently, the editor takes
formal responsibility for the editing. This can be done in minutes.

SQC Statistics

The team leader will ensure that all the required statistics from the
SQC are captured in the SQC database. This assumes a process
control use of SQC data.

Exit

The team leader evaluates the formal SQC exit conditions to see if the
specification may be released ‘economically’ for normal use. The

Specification Quality Control 241

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH008.3D – 221 – [221–260/40] 29.6.2005
12:42PM

estimated number of remaining major defects in the specification is
especially important. If the main specification is not released, the team
leader must work towards acceptable exit-levels of quality, usually in
cooperation with the specification writer.

Exit Conditions

X1: The main specification must have fewer remaining major defects/
page than the agreed exit standard (a maximum of ‘one remaining’ is a
reasonable ambition level, initially).

A Simplified SQC Process

SQC as described in the procedure above is the full-scale version.
There are situations when a simplified SQC process is more appro-
priate (for example, to obtain a rapid assessment of the specification
quality of a contract or to demonstrate to management some of the
power of SQC to get their ‘buy-in’).

Kickoff Checking Specification
Meeting

EditPlanning

Process
Meeting

Edit
Audit

SQC
Statistics

SQC Strategy

Main Specification,
Source Documents,

Kin Documents,
Rules

and Checklists

Quality Checked
Main Specification,

Change Requests for
Source and Kin
Documents and,

Suggested Process
Improvements

Entry Exit

Note: The ‘Process Meeting’ sub-process is exclusively a part of Defect Prevention
Process (DPP). All the rest is Defect Detection Process (DDP), although there may
be a small component of DPP within some of these sub-processes.

Figure 8.6
Diagram of the SQC Process showing the sub-processes.

242 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH008.3D – 221 – [221–260/40] 29.6.2005
12:42PM

A ‘Simplified SQC Process’ is presented below.

Note: There are several limitations to this simplified process:

. it is only a small sample so the accuracy is not as good as a full or
larger sample

. the team will not have time or experience to get up to speed on the
rules and the concept of major defect

. a small team of two people does not have the known effectiveness of
three or four people

. you will not have the basis for making corrections to the entire
specification

. the checking will not have been carried out against all the possible
source documents. (Usually in the simplified SQC process, no
source documents are used and memory is relied on. While this
means that the checking is not nearly as accurate, it does consider-
ably speed up the process.)

However, if the sample turns up a defects density estimation of 50 to
150 major defects/page (which is quite normal), that is more than
sufficient to convince the people participating, and their managers,
that they have a serious problem.

The immediate solution to the problem of high defect density is not to
remove the defects from the document. The most effective practical
solution is to make sure each individual specification writer takes the
defect density criteria (and its ‘no exit’ consequence) seriously. They will
then learn to follow the rules and, as a result, will reduce their personal
defect injection rate. On average, a personal defect injection rate should
fall by about 50% after each experience of using the SQC process.
Widespread use of SQC will result in large numbers of engineers
learning to follow the rules.

To get to the next level of quality improvement, the next step is to
improve the rules themselves.

Specification Quality Control 243

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH008.3D – 221 – [221–260/40] 29.6.2005
12:42PM

Simplified SQC Process

Tag: Simplified SQC.
Version: October 7, 2004.
Owner: Tom@Gilb.com.
Status: Draft.

Entry Conditions
. A group of two, or more, suitable people* to carry out Simplified SQC is assembled in
a meeting.

. These people have sufficient time to complete a Simplified SQC. Total elapsed time:
30 to 60 minutes.

. There is a trained SQC team leader at the meeting to manage the process.

Procedure
P1: Identify Checkers: Two people, maybe more, should be identified to carry out the
checking.
P2: SelectRules: Thegroup identifiesabout three rules touse for checking the specification.
(My favorites are clarity (‘clear enough to test’), unambiguous (‘to the intended reader-
ship’) andcompleteness (‘compared to sources’). For requirements, I alsouse ‘nodesign’.)
P3: Choose Sample(s): The group then selects sample(s) of about one page in length
(300 non-commentary words). Choosing a page at random can add credibility – so
long as it is representative of the content subject to quality control. The group should
decide whether all the checkers should use the same sample or whether different
samples are more appropriate.
P4: Instruct Checkers: The SQC team leader briefly instructs the checkers about the
rules, the checking rate, and how to document any issues and determine if they are
major defects (majors).
P5: Check Sample: The checkers use between 10 and 30 minutes to check their
sample against the selected rules. Each checker should ‘mark up’ their copy of the
document as they check (underlining issues and classifying them as ‘major’ or not). At
the end of checking, each checker should count the number of ‘possible majors’ they
have found in their page.
P6: Report Results: The checkers each report to the group their number of ‘possible
majors.’ The SQC team leader leads a discussion to determine how many of the
‘possible majors’ are actually likely to be majors. Each checker determines their num-
ber of majors and reports it.
P7: Analyze Results: The SQC team leader extrapolates from the findings the number of
majors in a single page (about 6 times** the most majors found by a single person, or
alternatively 3 times the unique majors found by a 2 to 4 person team). This gives the
major defect density. If using more than one sample, average the densities found by
the group in different pages. The SQC team leader then multiplies this average major
defects/page density by the total number of pages to get the total number of major
defects in the specification (for dramatic effect!).
P8: Decide Action: If the number of majors/page found is a large one (ten majors or
more), then there is little point in the group doing anything, except determining how
they are going to get someone to write the specification properly. There is no eco-
nomic point in looking at the other pages to find ‘all the defects’, or correcting the
majors already found. There are too many majors not found.
P9: Suggest Cause: Choose any major defect and think for a minute why it happened.
Then give a short sentence, or better still a few words, to capture your verdict.

244 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH008.3D – 221 – [221–260/40] 29.6.2005
12:42PM

Exit Conditions
. Exit if less than 5 majors/page extrapolated total density, or if an action plan to
‘rewrite’ has been agreed.

Notes:

* A suitable person is anyone, who can correctly interpret the rules and the concept of
‘major.’
** Concerning the factor of multiplying by ‘6’: We have found by experience (Gilb and
Graham 1993: Bernard) that the total unique defects found by a team is approximately
twice that of the number found by the person who finds the most defects in the team.
We also find that inexperienced teams using Simplified SQC seem to have about one
third effectiveness in identifying the major defects that are actually there. So 2! 3¼ 6 is
the factor we use (or 3! the number of unique majors found by the team).

Simplified Specification Quality Control Form

SQC Date: May 29, 200X. SQC Start Time: ______
SQC Leader: Tom.
Author: Tino.
Other Checkers: Artur.

Specification Reference: Test Plan.
Specification Date and/or Version: V 2 Total Physical Pages: 10.

Sample Reference within Specification: Page 3.
Sample Size (Non commentary words): approx. 300.

Rules used for Checking: Generic Rules, Test Plan Rules.
Planned Exit Level (Majors/logical page): ______ or less.

Checking Time Planned (Minutes): 30. Actual: 25.
Checking Rate Planned (Non commentary pages/hour): 2.
(Note this rate should be less than 2 logical pages/hour)

Actual Checking Rate (Non commentary words/minute): ______
Number of Defects Identified by each Checker:
Majors: 6, 8, 3. Total Majors Identified in Sample: 17.
Minors: 10, 15, 30.

Estimated Unique Majors Found by Team: 16# 5.
(Note 2!highest number of Majors found by an individual checker)

Estimated Average Majors/Logical Page: $16! 3¼48.
(A Logical Page¼300 Non commentary words)
Majors in Relation to Exit Level: 48/1 (47 too many).
Estimated Total Majors in entire Specification: 48! 10¼480.
Recommendation for Specification (Exit/Rework/Rewrite): No exit, redo and resubmit.
__

Suggested Causes (of defect level): Author not familiar with rules.
__
Actions suggested to mitigate Causes: Author studies rules, All authors given training
in rules.
__
Person responsible for Action: Project Manager.
SQC End Time: 18:08. Total Time taken for SQC: ______

Version: August 15, 2004. Owner: Tom@Gilb.com

Specification Quality Control 245

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH008.3D – 221 – [221–260/40] 29.6.2005
12:42PM

8.6 Principles: Specification Quality Control

1. The Principle of ‘Illegality’
‘Defects’ are objective violation of accepted written rules.

2. The Principle of ‘Majors are the pay off’
Major defects are the only economically interesting defects.

3. The Principle of ‘Keen to be seen clean’
The main purpose of SQC is to measure that the specification is
clean enough: not to clean up a specification that isn’t.

4. The Principle of ‘Cleanup your own mess’
Specification cleanup is the writer’s responsibility, before SQC.

5. The Principle of ‘Prevention is better than cure’
There are many effects of SQC, but the most useful are learning to
avoid defects caused by bad process, and committed by the writer.

6. The Principle of ‘50% effectiveness’
History shows that you can only expect to find and fix about half
the defects that are there.

7. John Craven’s Principle (within Hewlett Packard)
The team is there to make the ‘‘writer look like a hero.’’

8. The Principle of ‘Magnificent Profitability’
The expected return on investment for SQC is at least ‘ten to one.’

9. The Principle of ‘Client-Server’
The writer is the client and the checkers serve as advisors.

10. The Principle of ‘The Pilot in Command’
The team leader is responsible for the SQC process.

Good execution of a badly executed specification will tend to execute
you!

8.7 Additional Ideas: Specification Quality Control

There are some central ideas of SQC, which are worth looking at in
more depth:

Economics of using SQC

The cost of finding and fixing defects has to be balanced against the
benefit of removing the defects. The cost of fixing a defect escalates
the longer it is left unfixed. In general, as we move from requirements/

246 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH008.3D – 221 – [221–260/40] 29.6.2005
12:42PM

design-stages to test-stages, the total system-wide costs of removing
major defects increase by an order-of-magnitude. As we move into
design implementation, manufacturing, installation, servicing and
distribution, yet another additional order-of-magnitude of cost is
generally our penalty for dealing with major defects later.

The cost of finding defects also varies. There are several QC nets that
specifications pass through as a product is developed. Also, just because
there is a defect doesn’t mean that it will cause damage. This is where
sampling and understanding your document quality level is essential.

If there is more than approximately one remaining major defect/page,
it will tend to pay off to fight the defects immediately, using SQC,
rather than downstream. With less than that, it probably pays off to let
that major defect (exact location unknown) slip through this particular
QC net, and hope it is still caught in some other QC net in the
systems engineering process.

Unfortunately most real engineering environment ‘approved’ docu-
ments are at least one order-of-magnitude worse quality than one
major defect/page: 10 to 20 or far more major defects/page is com-
mon, according to my frequent measurements. But without SQC, to
measure for us, we don’t ‘know’ this.

Effectiveness of SQC

If SQC is consistently carried out according to official guidelines
(critically including the ‘checking rate’ being at the optimum level),
then experience in IBM Rochester Labs, MN (Gilb and Graham 1993
Page 23) shows that the defect-finding effectiveness is relatively stable.
Thirty percent effectiveness is a beginner’s level (my experience). For a
mature SQC process, effectiveness, for a single-pass attempt, tends to
be in the range 60% to 90% (Gilb and Graham 1993: IBM Experi-
ence), depending on the type of specification being checked. By
systematic SQC process improvement, the effectiveness can slowly
be improved to its maximum potential. Cumulative SQC effective-
ness, for multiple passes, has been shown to reach a maximum of 95%
(IBM UK and Sema UK Case (Gilb and Graham 1993: Leigh, D.)).

Determining Effectiveness and Estimating
Remaining Defects

SQC can be used directly to measure defects found and, indirectly to
estimate the defects not found. Providing that ‘effectiveness’ (% of
100%) at finding defects is known and is relatively stable, it can be used

Specification Quality Control 247

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH008.3D – 221 – [221–260/40] 29.6.2005
12:42PM

to estimate the number of unfound defects. Effectiveness (of your teams
on your specifications at finding defects) can be determined in two ways:

1. For a specific specification, we can measure the percentage of the
‘available’ defects, which a given SQC process was able to find. We
canwork out this percentage if we know the number of defects found by
the SQC and the total number of defects found at later stages by other
QC processes, testing and field use. IBM has practiced this for decades
in software engineering (Kaplan, Clark and Tang 1994; IBMSJ 1994).

2. Another method, faster and cheaper, and more credible locally, is
to repeat SQC on the same sample. If we find 30 defects on first
attempt, fix them all, and hypothesize that we are 30% effective at
finding them, this means we should have about 70 defects not
found in our sample, right? If, after fixing all the 30 we found, the
second SQC, done on the same sample, consistently finds about 21
defects (# about 6), it would confirm our prediction of 30%
(21 of the 70 remaining from the first SQC). The ‘% of available
defects found’ is the effectiveness of the given SQC process. We
use this method regularly on our training courses, and it works! It
will also work for any test or QC process.

Once you have determined your effectiveness, you can estimate the
remaining defects in a specification. We use the number of ‘estimated
probable remaining defects’ to decide if a specification can exit (a typical
exit condition is ‘no more than one probable remaining major defect/
page’). See Figure 8.7 for the calculation of ‘estimated probable remain-
ing defects.’ We use effectiveness to determine the number of defects
unidentified, and then we improve the accuracy by considering the
effects of the editing. One sixth of fix attempts during editing fail (M.
Fagan 1986:7 IBM experience), unless an SQC for each fix is done to
reduce fix failure (IBMSJ 1994: Kan). In addition, defect injection
occurs during editing as a side effect of the fixes; the defect injection
rate is sometimes 2% to 5% – but is highly variable and uncertain.

The final consideration is the uncertainty in the estimate. I have found
that this remaining defect estimate is reasonably correct, and even in
poor circumstances is #30% uncertain, which is good enough for
most purposes.

A specification can have ‘too high a density’ of major defects (equals
serious engineering-cost rule violations) to be acceptable for use (to be
allowed ‘entry’ or ‘exit’). ‘We will find it in test’ is a dangerous delay.
Delaying action on your specification’s major defects threatens not
only cost (thus profit), but time-to-market and competitive quality. It
pays off to deal with most major defects early.

7 Fagan. M. E, ‘Advances in Software Inspections’, IEEE Transactions on Software
Engineering. Volume SE-12, Number 7, Pages 744–751, July 1986.

248 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH008.3D – 221 – [221–260/40] 29.6.2005
12:42PM

SQC and Rules

SQC is completely dependent on the rules that are applied. Just
because you exit from an SQC process does not mean that all quality
checking has been completed. It simply means that checking has been
completed against the rules actually used, and has demonstrated an
acceptable defect level.

By using different rules, different types of quality checking can be
achieved. It is not simply a case of using the relevant rule set to
match the type of specification. You need to consider what type of
defects you are checking for and their potential cost if not detected.

Extending from SQC into Specification Review

There is no reason why the SQC method shouldn’t be used to prepare
for management reviews. You might have checked the content of a
specification for consistency, completeness and clarity (Specification
Rules).8 But maybe you have not yet checked for the relevance to

Estimating the Remaining Major Defect Density

Assumptions:
A logical page (page) is 300 non-commentary words.

. 30 major defects/page have been found during SQC.

. Your SQC effectiveness is 60% and your SQC is a statistically stable process.

. One sixth of your attempts to fix defects fail (One sixth is average failure to fix).

. New defects are injected during your attempts to fix defects at 5%.

. The uncertainty factor in the estimation of remaining defects is #30%.

Probable remaining major defects/page¼ ‘Probable unidentified majors’þ ‘Bad fix
majors’þ ‘Majors injected’

Let E¼Effectiveness expressed as a percentage (%)¼60%

Probable unidentified majors¼major defects acknowledged-by-editor for each page at
Edit! (100&E) / E¼30 major defects/page found! (100&60) / 60¼20 major defects/page.

Bad fix majors¼One sixth of fixed majors¼So, of 30 attempted fixes, 5 major defects in
each page are not fixed.

Majors injected¼ 5% of majors attempted to be fixed¼ 1.5 major defects/page.

Probable remaining major defects/page¼ 20þ5þ1.5¼26.5 remaining major defects/page.

Taking into account the uncertainty factor of #30% and rounding down to the nearest whole
number gives 26#7 Remaining Major Defects/Page

(Minimum¼ 19, Maximum¼33 remaining major defects/page).

Figure 8.7
Estimating Remaining Major Defect Density: the main specification exit condition.

8 Note: This chapter mainly discusses and illustrates SQC from the viewpoint of
checking for specification clarity, completeness and consistency. This ties in with the
rules found in the other chapters, which are Specification Rules.

Specification Quality Control 249

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH008.3D – 221 – [221–260/40] 29.6.2005
12:42PM

current business or technical demands. For example, maybe a certain
level of ROI is demanded? Maybe a specific safety margin must be
shown to be present? By creating a different set of rules, called
Specification Review Rules, the SQC process can also be used to carry
out pre-review quality control, in advance of a review meeting. This
will probably result in better quality control than would be carried out
in a hurried executive review meeting.

8.8 Further Example/Case Study: A Stitch in Time
Saves Nine

Trevor Reeve made use of SQC (at that time he called it ‘Statistical
Quality Control applied to Software and Documentation’ or ‘Docu-
mentation Quality Improvement’) in all industrial aspects of a 1,500
person defense electronics manufacturer (later a part of Racal). He
documented four years of experience after this author ran a course
on-site (Gilb and Graham 1993, Pages 305–316).

Reeve carried out an analysis of the first 1,000 major defects logged by
the SQC process to investigate the cost savings of using SQC. Test

Specification Quality Control (SQC)
Review

(Go/No Go)

Source
Documents

Decisions
And

Actions
To Be
Taken

Main
Specification
(SQC Exited)

Kin
Documents

Main
Specification

Rules

Specification
Rules

Clear,
Complete &

Unambiguous?

Specification
Review
Rules

Right Thing
To Do?

Entry
Process Task Process Exit

Process

Change Requests
for Source and
Kin Documents,
and Suggested

Process
Improvements

After Exit
from a

Specification
Process

and associated Checklists

Main
Specification
(SQC Exited)

Figure 8.8
Overview of the SQC process showing how Specification Review Rules fit alongside
Specification Rules.

250 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH008.3D – 221 – [221–260/40] 29.6.2005
12:42PM

and field staff were asked when these defects would have been found in
their test or field reports. They were also asked to indicate what the
cost of finding and fixing them would be. The frequency curve in
Figure 8.9 was drawn based on their answers. The mean time to correct
these defects downstream would have been 9.3 hours. The mean time
to find and fix them using SQC was about one hour. The defects
would otherwise have been found by test and by customers. The result
of this was that it was acknowledged by top management that remov-
ing a major defect using SQC gave a net saving of about 8 hours, or a
9.3 to 1 ratio of engineering hours ‘return’ on investment in SQC.

Compare this to the Raytheon return of 7.7 to 1 (see Section 1.8). Six
hundred inspections had been done at Thorn EMI by 1992, and over a
thousand by early 1993. Savings were conservatively estimated at
£500,000 each year, after one-time startup costs of £50,000. External
consultants are said to have estimated real savings at double this figure.
‘‘Quality increased and development time has been reduced significantly.’’

Use of SQC on many different types of document

SQC experience at Raytheon was limited to software, but at MEL/
Thorn EMI, the documents

‘‘ranged from system, hardware and software design docu-
ments to software code and change notes . . . test specifications,
proposals, program management documents (for example,

mean time to correct major if
not found upstream = 9.3 hrs

250

200

150

100

50
qu

an
tit

y
of

 d
ef

ec
ts

10 20 30 40 50 60 70 80
estimated time to correct in hours

(Source: Thorn EMI June 1989 – January 1990

Figure 8.9
MEL/Thorn EMI (later RACAL) UK, Factory and Lab-wide SQC gave order-of-magnitude
savings. About 1,000 major defects found by using SQC with multi-disciplinary teams
were analyzed. The alternative cost to fix majors, if caught downstream, was nine
times greater than if caught upstream by SQC. This is a frequency chart for the 1,000
defects.

Specification Quality Control 251

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH008.3D – 221 – [221–260/40] 29.6.2005
12:42PM

configuration and program plans), contracts and purchase
specifications, printed circuit board design and test specifica-
tions, and procedures and standards.

Further application (1993) all contractual documents, drawings
and internal specifications (for example, information technol-
ogy and financial requirements) . . . with all contracts using it to
a lesser or greater degree by end 1992. . . .

The product appraisal process was revised to incorporate the
technique into the normal activities performed by the organiza-
tion on all types of document from contract to lowest level
design and test specification including drawings.’’ (Gilb and
Graham 1993: P310)

Note: The use of SQC on the upstream documents will produce the
greatest benefits because defects will be caught earlier, and do less
damage.

The Organization Must be Supportive and SQC
Needs a Champion

Since 1993, Trevor has confirmed many times within different organ-
izations and various parts of the world, that two of the main factors for
SQC to succeed are as follows:

1. An organization really needs to be willing to change, and
2. The continuous presence of a totally committed champion of

the method is necessary, for many years after the initial introduc-
tion of the method, to help the necessary culture change to take
place. (This was also the experience in the same period of another
client, Hewlett-Packard (Grady and Van Slack 1994).)

8.9 Diagrams/Icons: Specification Quality
Control

This section shows the SQC forms as follows:

. Figure 8.10: Master Plan

. Figure 8.11: Editor Advice Log

. Figure 8.12: Data Summary

. Figure 8.13: Process Meeting Log

. Figure 8.14: Simplified SQC Form

These are the blank versions of the filled-in forms given earlier in this
chapter.

252 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH008.3D – 221 – [221–260/40] 29.6.2005
12:42PM

S
Q

C
 T

ea
m

 M
as

te
r

P
la

n
S

Q
C

 ID

 T
ea

m
 L

ea
de

r

M
ai

l/t
el

. c
od

e
W

rit
er

(s
)

M
ai

l/ T
el

. C
od

e

 D
at

e
S

Q
C

 w
as

 re
qu

es
te

d
S

pe
c.

 T
itl

e

 T
ot

al
 p

hy
si

ca
l p

ag
es

 V

er
si

on

In
te

nd
ed

 p
ur

po
se

s
of

 th
is

 S
Q

C

E
nt

ry
 C

on
di

tio
ns

 w
hi

ch
 a

pp
ly

 (t
ag

s)

(G

en
er

ic
 E

nt
ry

 C
on

di
tio

n
S

I p
g.

 6
4–

66
)

C
ur

re
nt

 E
nt

ry
 S

ta
te

s
(m

et
, w

av
ed

)

 W
hy

?
E

xi
t C

on
di

tio
ns

 w
hi

ch
 w

ill
 b

e
ap

pl
ie

d
(t

ag
s)

 [

]
X

C
(G

en
er

ic
 E

xi
t C

on
di

tio
ns

 S
I p

g.
 2

02
)

M
ee

tin
gs

K
ic

ko
ff

D
at

e

 L
oc

at
io

n

S

ta
rt

T
im

e

 E
nd

 ti
m

e
S

pe
c.

 D
at

e

 L

oc
at

io
n

S
ta

rt
T

im
e

 E

nd
 ti

m
e

P
ro

ce
ss

: D
at

e

 L

oc
at

io
n

S
ta

rt
T

im
e

 E

nd
 ti

m
e

D
oc

um
en

ts
 (s

pe
ci

fie
d

pa
rt

s
to

 b
e

us
ed

 b
y

ch
ec

ke
rs

)
sa

m
pl

es
 o

r c
he

ck
(s

)
S

pe
ci

fic
at

io
n(

s)

R
ul

es
: G

en
er

ic
 [

] S
I 4

24
-5

 o
r

in
 h

ou
se

 S

pe
ci

fic

C
he

ck
lis

ts
: F

or
 S

pe
c.

F
or

 o
th

er
 D

oc
um

en
ts

T
ea

m
 S

et
up

:

T
ea

m
M

em
be

r
N

am
e

T
el

.
E

xt
.

S
Q

C
 R

ol
e

S
of

t.
In

sp
.

P
ag

e
36

2–
73

,
e.

g.
 E

di
to

r,
 C

he
ck

er

S
pe

ci
fic

at
io

n
P

ar
t

(T
he

 S
pe

ci
fic

 s
ec

tio
n

or
pa

ge
s

of
 th

e
do

cu
m

en
t)

S
ou

rc
e

D
oc

um
en

ts
an

d
S

ec
tio

ns
 y

ou
ar

e
re

sp
on

si
bl

e
fo

r

R
ul

es
 &

C
he

ck
lis

ts

C
he

ck
in

g
P

ro
ce

du
re

 &
ot

he
r

ta
ct

ic

C
he

ck
in

g
E

ffo
rt

 in
 h

rs
.

R
ec

om
m

en
de

d
A

ve
ra

ge
 T

ea
m

 C
he

ck
in

g-
R

at
es

, S
Q

C
 G

oa
l a

nd
 S

tr
at

eg
y

N
um

er
ic

 S
Q

C
 G

oa
l,

se
t d

ur
in

g
ki

nd
 o

ff
S

tr
at

eg
y

to
 m

ee
t S

Q
C

 G
oa

l

O
pt

im
um

 C
he

ck
in

g
R

at
e,

 fo
r

th
is

 ty
pe

 o
f s

pe
ci

fic
at

io
n

is

 p
ag

es
 p

er
 h

ou
r,

of
 n

on
-c

om
m

en
ta

ry
 te

xt
.

S
pe

c
m

ee
tin

g
ch

ec
ki

ng
-r

at
e:

 p

ag
e(

s)
 (3

00
 w

or
ds

, N
on

-C
om

m
en

ta
ry

) p
er

 h
ou

r
(o

pt
im

um
 r

at
e

of
 c

he
ck

in
g

du
rin

g
th

e
S

pe
c

m
ee

tin
g)

 t

hi
s

is
 th

e
en

d
of

 th
e

M
as

te
r P

la
n.

In

di
vi

du
al

 C
he

ck
er

 D
at

a
C

ol
le

ct
io

n
(f

ill
ed

 in
 b

y
ea

ch
 c

he
ck

er
, a

fte
r c

he
ck

in
g

an
d

be
fo

re
 th

e
S

pe
c.

 m
ee

tin
g)

A
ct

ua
l w

or
k-

ho
ur

s
(t

en
th

s)
 s

pe
nt

:

N

o.
 o

f (
30

0w
 N

C
)

P
ag

es
 c

he
ck

ed
 a

t o
pt

im
um

 r
at

e:
M

aj
or

 is
su

es

 [

in
cl

. E
xx

x-
M

aj
or

s
(p

ro
je

ct
 th

re
at

)

],

 m
in

or
 is

su
es

P
ro

ce
ss

 im
pr

ov
em

en
t s

ug
ge

st
io

ns

 ?

s
of

 in
te

nt
 (

to
 a

ut
ho

r)
M

y
C

he
ck

in
g

R
at

e
w

as
:

 P
ag

es
 / h

ou
r.

H
ow

 d
oe

s
th

is
 d

ev
ia

te
 fr

om
 y

ou
r p

la
nn

ed
 ra

te
?

W

hy
?

an

d
of

 In
di

vi
du

al
 D

at
a

C
ol

le
ct

io
n

E
xa

m
pl

e
of

 a
 B

la
nk

 M
as

te
r

P
la

n

M
as

te
r

P
la

n

 G

ilb

[]
 E

C

Fi
g
ur
e
8.
10

Bl
a
nk

M
a
st
e
rP

la
n.

Specification Quality Control 253

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH008.3D – 221 – [221–260/40] 29.6.2005
12:42PM

S
Q

C
 ID

E
xa

m
pl

e
of

 a
 B

la
nk

 E
di

to
r

A
dv

ic
e

Lo
g

D
at

e
S

ta
rt

 ti
m

e
E

nd
 ti

m
e

P
ag

e

 o
f

Ite
m

N
o.

D
oc

um
en

t
R

ef
er

en
ce

 T
ag

P
ag

e
Li

ne
 o

r
T

ag
E

xa
ct

 L
oc

at
io

n
T

yp
e

of
 It

em
C

he
ck

lis
t o

r
R

ul
e

T
ag

S
ou

rc
e

In
co

ns
is

te
nc

y
an

d/
or

 N
ec

es
sa

ry
 D

es
cr

ip
tio

n
M

aj
or

M

in
or

?
Im

p.

 N
ew

M
aj

or

M
in

or
?

Im
p.

 N

ew
M

aj
or

M

in
or

?
Im

p.

 N
ew

M
aj

or

M
in

or
?

Im
p.

 N

ew
M

aj
or

M

in
or

?
Im

p.

 N
ew

M
aj

or

M
in

or
?

Im
p.

 N

ew
M

aj
or

M

in
or

?
Im

p.

 N
ew

M
aj

or

M
in

or
?

Im
p.

 N

ew
M

aj
or

M

in
or

?
Im

p.

 N
ew

M
aj

or

M
in

or
?

Im
p.

 N

ew

1 2 3 4 5 6 7 8 9 10

S
ub

to
ta

ls
:

N
ew

 It
em

s
fo

un
d

du
rin

g
th

e
S

pe
c.

 M
ee

tin
g

M
aj

or
 is

su
es

 lo
gg

ed
. M

in
or

 is
su

es
 lo

gg
ed

 G

ilb

O
cc

ur
s

E
di

to
r A

ct
io

n
(d

ur
in

g
ed

iti
ng

)

E
di

to
r

A
dv

ic
e

Lo
g

?
Q

ue
st

io
ns

 o
f I

nt
en

t l
og

ge
d

Im
pr

ov
em

en
t s

ug
ge

st
io

ns
 lo

gg
ed

.
.

Fi
g
ur
e
8.
11

Bl
a
nk

Ed
ito

rA
d
vi
c
e
Lo

g
.

254 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH008.3D – 221 – [221–260/40] 29.6.2005
12:42PM

E
xa

m
pl

e
of

 a
 B

la
nk

 D
at

a
S

um
m

ar
y

D
at

a
S

um
m

ar
y

ba
se

d
on

 S
I p

ag
e

40
3

(Im
pr

ov
ed

)

T
ot

al
 lo

gi
ca

l (
30

0
N

on
-C

om
m

en
ta

ry
 w

or
ds

/p
ag

e)
 C

he
ck

ed
 P

ag
es

 o

f
D

at
e/

tim
e:

 S
Q

C
 R

eq
ue

st
ed

 D

at
e

E
nt

ry
 c

rit
er

ia
 p

as
se

d

S
Q

C
 ID

 D
at

e
T

ea
m

 L
ea

de
r

 C
on

ta
ct

 N
um

be
r

S
pe

ci
fic

at
io

n
R

ef
er

en
ce

C
he

ck
er

R
ep

or
t

P
ag

es
S

tu
di

ed
(P

)

C
he

ck
in

g
ho

ur
s

(t
)

M
aj

or
 +

 S
M

is
su

es
M

in
or

 Is
su

es
Im

pr
ov

em
en

ts
?’

s
no

te
d

C
he

ck
in

g
R

at
e

(P
/t)

-
1st

 -

-
2nd

 -

-
3rd

 -

-
4th

 -
-

5th
 -

A
ve

ra
ge

 T
ea

m
 C

he
ck

in
g-

ra
te

 P
/t.

 =

C
H

E
C

K
IN

G
 D

A
TA

 (t
o

be
 re

po
rt

ed
 o

ra
lly

 d
ur

in
g

th
e

en
tr

y
pr

oc
es

s
fo

r S
pe

c.
 m

ee
tin

g)

M
aj

or
 +

 S
M

is
su

es
 lo

gg
ed

M
in

or
is

su
es

lo
gg

ed

Im
pr

ov
em

en
t

su
gg

es
tio

ns
?s

 o
f i

nt
en

t
N

ew
 is

su
es

 fo
un

d
in

 th
e

m
et

tin
g

S
P

E
C

IF
IC

A
TI

O
N

 O
N

 M
E

E
TI

N
G

 S
U

M
M

A
R

Y
 (

A
ll

ite
m

s
lo

gg
ed

 d
ur

in
g

th
e

S
pe

c.
 m

ee
tin

g)

FI
N

A
L

FI
N

D
IN

G
S

 A
S

 R
E

P
O

R
TE

D
 B

Y
 E

D
IT

O
R

M
aj

or
 +

 S
M

 d
ef

ec
ts

m
in

or
 d

ef
ec

ts
C

ha
ng

e
R

eq
ue

st
s

E
X

IT
 R

E
S

U
LT

S

D
id

 th
e

do
cu

m
en

t E
xi

t t
he

 S
Q

C
 E

xi
t C

rit
er

ia

D
id

 th
e

S
Q

C
 P

ro
ce

ss
 m

ee
t t

he
 S

Q
C

 E
xi

t C
rit

er
ia

:

Y
es

 D
at

e

 C

om
m

en
t

N
o

D
at

e

 C

om
m

en
t

E
ffi

ci
en

cy
(M

aj
/w

k-
hr

)

E
st

 r
em

ai
ni

ng
M

aj
 +

 S
M

de
fe

ct
s/

pa
ge

E
st

. e
ffe

ct
iv

en
es

s
(%

 m
aj

 d
ef

ec
ts

fo
un

d/
pa

ge
)

E
S

T
IM

A
T

E
S

(1
)

P
la

nn
in

g-
tim

e
(t

o
pl

an
th

at
 S

Q
C

)
ho

ur
s

(t
en

th
s)

ho
ur

s
(t

en
th

s)

ho
ur

s
(t

en
th

s)

(2
) E

nt
ry

-t
im

e
(t

o
ch

ec
k

th
at

 e
nt

ry
 c

rit
er

ia
 is

 m
et

.)

(3
) K

ic
ko

ff
M

ee
tin

g
 W

or
k

H
ou

rs
 (N

O
T

 c
lo

ck
 h

ou
rs

)

D
at

a
S

um
m

ar
y

(6
)

E
di

t-
tim

e
(w

or
k-

ho
ur

s
in

 te
nt

hs
)

(w
or

k-
ho

ur
s

in
 te

nt
hs

)

(w
or

k-
ho

ur
s

in
 te

nt
hs

)

(w
or

k-
ho

ur
s

in
 te

nt
hs

)
(w

or
k-

ho
ur

s
in

 te
nt

hs
)

(w
or

k-
ho

ur
s

in
 te

nt
hs

)

(7
)

E
di

t A
ud

it
tim

e

(8
)

E
xi

t-
tim

e

(9
)

C
on

tr
ol

-t
im

e
=

1
+

2
+

3
+

7
+

8
(1

0)
 D

ef
ec

t-
re

m
ov

al
-t

im
e

=
11

 +
 6

 +
 7

 +
 8

P
ro

ce
ss

 M
ee

tin
g

tim
e

E
D

IT
, E

di
t A

ud
it,

 E
X

IT
, P

ro
ce

ss
 M

ee
tin

g
A

N
D

 F
IN

A
L

C
O

S
T

S
U

M
M

A
R

Y

S
P

E
C

IF
IC

A
TI

O
N

 M
E

E
TI

N
G

 D
A

TA
(f

ill
 in

 a
t t

he
 e

nd
 o

f t
he

 S
pe

c.
 m

ee
tin

g)

(N
) N

um
be

r o
f p

eo
pl

e
(p

eo
pl

e)

(D
) L

og
gi

ng
-d

ur
at

io
n

(c
lo

ck
 h

ou
rs

in
 te

nt
hs

)

(5
)

Lo
gg

in
g-

tim
e

(N
) *

 (D
)

(w
or

k-
ho

ur
s

in
 te

nt
hs

)

(1
1)

 D
et

ec
tio

n-
tim

e
(P

la
n

+
K

ic
ko

ff
+

C
he

ck
 +

 L
og

)
(1

) +
 (2

) +
 (3

) +
 (4

) +
 (5

)

(w
or

k
ho

ur
s

in
 te

nt
hs

)

Ite
m

-L
og

gi
ng

 r
at

e
(it

em
s

/ m
in

ut
e)

S
pe

c-
m

ee
tin

g-
ra

te
(p

ag
es

 p
er

 h
ou

r
ch

ec
ke

d)

 G

ilb

Fi
g
ur
e
8.
12

Bl
a
nk

D
a
ta

Su
m
m
a
ry
.

Specification Quality Control 255

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH008.3D – 221 – [221–260/40] 29.6.2005
12:42PM

Item Issue
Reference

Cause Class
(tick 1)

Root Cause
Ideas

Improvement
Ideas

1

Communication
Oversight

Transcription
Education

Communication
Oversight

Transcription
Education

Communication
Oversight

Transcription
Education

Communication
Oversight

Transcription
Education

Communication
Oversight

Transcription
Education

Communication
Oversight

Transcription
Education

Communication
Oversight

Transcription
Education

2

3

4

5

6

7

Process Meeting Log

Team Leader Date SQC ID Page of

8

9

10

Communication
Oversight

Transcription
Education

Communication
Oversight

Transcription
Education

Communication
Oversight

Transcription
Education

 Gilb
Start Time Stop Time Duration No. People Total Cost

Figure 8.13
Blank Process Meeting Log.

256 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH008.3D – 221 – [221–260/40] 29.6.2005
12:42PM

8.10 Summary: Specification Quality Control

The basic ideas of SQC are simple:

. ‘‘A stitch in time saves nine’’: fix defects at early design stages
(DDP), before they cause damage and/or require a costly ‘defect
removal’ process, during test or operation,

. ‘‘An ounce of prevention is worth a pound of cure’’: learn from
defects, which have common underlying causes, and continuously
improve your work processes (DPP).

Simplified Specification Quality Control (SQC) Form

SQC Date: ______ SQC Start Time: ______
SQC Leader: ______
Author: ____________
Other Checkers: __

Specification Reference: ______________________________
Specification Date and/or Version: ______ Total Physical Pages: ______

Sample Reference within Specification: __
Sample Size (Non commentary words): ______

Rules used for Checking: ___
Planned Exit Level (Majors/logical page): ______ or less.

Checking Time Planned (Minutes): ______ Actual: ______
Checking Rate Planned (Non commentary words/minute): ______
(Note this rate should be less than 2 logical pages/hour)

Actual Checking Rate (Non commentary words/minute): ______
Number of Defects Identified by each Checker:

Majors: ______ Total Majors Identified in Sample: ______
Minors: ______

Estimated Unique Majors Found by Team: ______ # ______
(Note 2!highest number of Majors found by an individual checker)

Estimated Average Majors/Logical Page: ______ (A Logical Page¼300 Non commentary
words)
Majors in Relation to Exit Level: ______
Estimated Total Majors in entire Specification: ______
Recommendation for Specification (Exit/Rework/Rewrite):
__

Suggested Causes (of defect level):
__

Actions suggested to mitigate Causes:
__

Person responsible for Action: ______________________________

SQC End Time: ______ Total Time taken for SQC: ______

Version: August 15, 2004. Owner: Tom@Gilb.com

Figure 8.14
Simplified Specification Quality Control (SQC) form.

Specification Quality Control 257

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH008.3D – 221 – [221–260/40] 29.6.2005
12:42PM

Finding Defects

The Defect Detection Process (DDP) is more powerful than similar
processes, such as ‘checking’9 (of engineering drawings, as proven at
Douglas Aircraft 1988, Boeing 1989 and Thorn EMI 1990 on),
‘reviews ’, ‘walkthroughs ’, meetings and management approval. This
is mostly due to a series of tactics, the most critical of which are
probably the use of a proven optimum defect-searching time (optimum
checking rate) and, the total focus on finding and fixing ‘major’ defects
(which saves time downstream).

Understanding Document Quality

One of the most important opportunities using SQC is to be able to
measure the degree to which systems engineering and management
documents of all types really do correspond to the required standards of
quality. The concepts of ‘entry’ to, and ‘exit’ from, all systems engineering
and management processes are enabled by our ability to measure ‘prob-
able remaining major defects/page’ and to decide by estimation if a
specification is economic enough to release downstream (‘exit’), or eco-
nomic enough to start work on (allow ‘entry’). If necessary, sampling of
large documents is an economic way to measure quality levels before
making decisions of consequence concerning those documents.

The fact that the SQC process is universally applicable to any readable
specification (in any intellectual, administrative, project management,
planning, systems engineering, software or user specification task), means
that any group of people can use it wherever they want control over
quality-in-relation-to-standards. However, SQC has some limitations in
understanding ‘how well’ specifications will work in practice. Even if
specifications exit according to any rules you use to analyze them, there
can still be catastrophic defects in them in practice. So, we need to use
additional methods to see ‘how good’ a specification is and, if necessary,
adjust the specification. That is the mission of other tools in this book
(like Impact Estimation and Evolutionary Project Management).

The SQC ability to measure quality, in relation to standards, is also
important when the standards are a major part of continuous process

9 Do not confuse with the SQC ‘Checking’ sub-process! The aircraft factory traditionally
used the term ‘checking’ for a process done by a group of people who specialized in this,
called ‘checkers.’ The process checked engineering drawings against the official engineer-
ing drawing specification rules, which were in a large handbook – so large that copies were
not given to inform individual engineers what the rules were! In 1988 we proved, with
hard data on a large scale, for the engineering directors, that the SQC process was far more
effective at finding interesting engineering defects than the traditional ‘checking’ process.
We ended up within the first year with sixty times better quality in terms of rejected and
reworked drawings (0.5% versus earlier about 30% reworked).

258 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH008.3D – 221 – [221–260/40] 29.6.2005
12:42PM

improvement. We can use SQC to measure process improvement
efforts! The measurement of defects is a measure of whether people
have actually learned, practiced, and understood the continuous
improvements intended to increase productivity.

Continuous Process Improvement

The Defect Prevention Process (DPP) exploits grass-root everyday
experience with Defect Detection Process (DDP), as well as making
use of your data about defects from ‘test’ and ‘field’ situations. DPP is
the ‘engineering and management’ version of what Deming (1993)
and Juran (1974) taught manufacturing industry, starting in Japan.
Experience (Dion 1993; Haley et al. 1995; Kaplan, Clark and Tang
1994) shows that 40% annual productivity improvements are possi-
ble, when this is done properly (which is rare).

Possible Purposes For Using SQC

-Reducing Time-to-Delivery
-Measuring the Intelligibility of a Document
-Measuring the effectiveness of engineering specifications
-Measuring the ability of the Process producing the Document to follow best practice rules.
-Enabling Estimation of the Number of Remaining Major Defects
-Identifying Major Defects
-Removing Major Defects
-Preventing consequential ‘Downstream’ Defects being generated by removing existing
Defects
-Improving the Engineering Specification Process (better standards, like rules)
-Improving the SQC Process (better rates, better entry exit conditions, better procedures)
-On-the-Job Training for the Checkers
-Training the Team Leader
-Certifying the Team Leader
-Peer Motivation (getting people to learn, and follow the rules)
-Motivating the Managers (to deal with problems early)
-Helping the Writer (learn to write clearly and have effective ideas)
-Reinforcing Conformance to Standards
-Capturing and Re-using Expert Knowledge (by use of Rules and Checklists)
-Reducing Costs
-Team Building
-Fun – a Social Occasion

Figure 8.15
Possible purposes for using SQC. Any one or several can apply at anytime.

Specification Quality Control 259

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH008.3D – 221 – [221–260/40] 29.6.2005
12:42PM

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH009.3D – 261 – [261–290/30] 29.6.2005
12:43PM

Chapter

9

IMPACT ESTIMATION
How to understand strategies

GLOSSARY CONCEPTS

Baseline
Impact Estimate
Scale Impact
Scale Uncertainty
Incremental Scale Impact
Percentage Impact
Percentage Uncertainty
Performance to Cost Ratio
Credibility
Safety Factor
Safety Margin
Safety Deviation
Side Effect
Uncertainty

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH009.3D – 261 – [261–290/30] 29.6.2005
12:43PM

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH009.3D – 261 – [261–290/30] 29.6.2005
12:43PM

9.1 Introduction to Impact Estimation

Systems engineers and managers need a reliable way of analyzing how
effective their design ideas or strategies are in meeting the require-
ments. Surprisingly, there are few methods being taught or used to do
this. Impact Estimation (IE) is one of these methods. It is the only one
that attempts to use any quantified rigor.

The intention of IE is that it helps answer the question of how
our design ideas impact all a system’s critical performance attributes
(such as usability and reliability) and all its resource budgets (such as the
financial cost and staff headcount) for implementation and operational
running. This question is fundamental to systems engineering.

IE can be used for a wide variety of project purposes. Its most
important uses include:

. Comparing alternative design ideas: ‘‘What’s best?’’

. Estimating the state of the overall design architecture: ‘‘Have we
designed enough?’’

. Analyzing risk: ‘‘Where are our biggest problems now?’’

. Planning and controlling evolutionary project delivery steps: ‘‘Is the
project on track?’’

IE can be used at any organizational level and by different specialist
staff roles (such as systems analyst, architect, risk analyst, project
manager and purchasing manager) to evaluate any technical or orga-
nizational idea. In fact, IE is useful in permitting integrated assessment
of technical and organizational design ideas. It is specifically helpful in
improving communication about system design decisions across orga-
nizational levels and boundaries.

Impact Estimation Policy

1. All design ideas or strategies which can have a significant impact (5% or more) on any
critical performance or cost requirement of a project must be evaluated in an IE table.

2. The design ideas must be specified in sufficient detail and clarity to support IE, irrespective
of who would make or evaluate the estimates.

3. An IE table, together with all its related design and requirement specifications, must be
quality controlled with respect to all the relevant rules. The level of estimated remaining
major defects/page must be low enough to exit and it must be stated (ideally on the cover
page of the document).

4. Significant proposed changes to the design ideas or architecture must be accompanied by a
quality controlled IE table showing the net impact of the changes.

Figure 9.1
Impact Estimation Policy. Several of my clients have adopted a policy mandating use of
IE. This ensures people use the method and helps management (assuming they are IE
literate) make more informed decisions about proposed strategies.

Impact Estimation 263

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH009.3D – 261 – [261–290/30] 29.6.2005
12:43PM

IE can be used for a wide variety of purposes including:

1. Evaluating a single design idea. How good is the idea for us?
2. Comparing two or more design ideas to find a winner, or set of winners. Hint: Use IE, if you

want to set up an argument against a prevailing popular, but weak design idea!
3. Gaining an architectural overview of the impact of all the design ideas on all the objectives

and budgets. Are there any negative side effects? What is the cumulative effect?
4. Obtaining systems engineering views of specific components, or specific performance

aspects. For example: Are we going to achieve the reliability levels?
5. Analyzing risk: evaluating a design with regard to ‘worst case’ uncertainty and minimum

credibility.
6. Planning evolutionary project delivery steps with regard to performance, value, benefits

and cost.
7. Monitoring, for project management accounting purposes, the progress of individual evolu-

tionary project delivery steps and, the progress to date compared against the requirement
specification or management objectives.

8. Predicting future costs, project timescales and performance levels.
9. Understanding organizational responsibility in terms of performance and budgets by orga-

nizational function.*
10. Achieving rigorous quality control of a design specification prior to management reviews

and approval.
11. Presenting ideas to committees, management boards, senior managers, review boards

and customers for approval.
12. Identifying which parts of the design are the weakest (risk analysis). Hint: If there are no

obvious alternative design ideas, any ‘weak links’ should be tried out earliest, in case they
do not work well (risk management). This impacts scheduling.

13. Enabling configuration management of design, design changes, and change consequences.
14. Permitting delegation of decision-making to teams. People can achieve better internal

progress control using IE, than they can from repeatedly making progress reports to
others, and acting on others’ feedback.

15. Presenting overviews of very large, complex projects and systems by using hierarchical IE
tables. Aim for a one page top-level IE view for senior management.

16. Enabling cross-organizational co-operation by presenting overviews of how the design
ideas of different projects contribute towards corporate objectives. Any common and
conflicting design ideas can be identified. Hint: This is important from a customer view-
point; different projects might well be delivering to the same customer interface.

17. Controlling the design process. You can see what you need, and see if your idea has it by
using an IE table. For example, which design idea contributes best to achieving usability?
Which one costs too much?

18. Strengthening design. You can see where your design ideas are failing to impact suffi-
ciently on the objectives; and this can provoke thought to discover new design ideas or
modify existing ones.

19. Helping informal reasoning and discussion of ideas by providing a framework model in our
minds of how the design is connected to the requirements.

20. Strengthening the specified requirements. Sometimes, you can identify a design idea,
which has a great deal of popular support, but doesn’t appear to impact your requirements.
You should investigate the likely impacts of the design idea with a view to identifying
additional stakeholder requirements. This may provide the underlying reason for the
popular support. You might also identify additional types of stakeholders.

Note: * In 1992, Steve Poppe pioneered this use at executive level while at British Telecom, North America.

Figure 9.2
Purposes for the use of Impact Estimation. IE can have a wide variety of uses for a systems
engineer, planner or manager: it can help from the earliest stages of evaluating potential
ideas, strategies, architectures and purchases, to formally presenting proposals to man-
agement, to assessing the results of project delivery.

264 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH009.3D – 261 – [261–290/30] 29.6.2005
12:43PM

9.2 A Simple Practical Example of Impact
Estimation

Now let’s consider a practical example and show how you can use the
IE approach. Assume you have an objective as follows:

Learning:
Gist: Make it substantially easier for our users to learn tasks<-Marketing.
Scale: Average time for a defined [User Type: Default UK Telesales
Trainee] to learn a defined [User Task: Default Response] using <our
product’s instructional aids>.
Response: Task: Give correct answer to simple request.
Past [Last Year]: 60 minutes.
GN: Goal [By Start of Next Year]: 20 minutes.
GA: Goal [By Start of Year After Next]: 10 minutes.

Imagine you have an initial design idea to satisfy the goals GN
and GA:

Handbook: Gist: Write a user handbook to define how to do the tasks.

Strategy Comparison: Apples and Oranges

Alternative Strategies

Performance to Cost Ratio

Apples Oranges

Eater Acceptance
From 50% to 80% of People

Pesticide Measurement
Reduce from 5% to 1%

Vitamin C
Increase from 50 mg to 100 mg per day

Carbohydrates
Increase from 100 mg to 200 mg per day

Shelf-Life
Increase from 1 week to 1 month

70% 85%

50% 100%

70% 200%

50% 80%

20% 5%

Sum of Performance 260% 470%

Relative Cost
Local currency

0.50 3.00

Sum of Costs 3.000.50

1.571.575.25.2

Objectives

Resources

“Evidence”
for these numbers
should, of course,

be available
on a separate sheet
(but not shown here)

Figure 9.3
Comparison of Apples and Oranges using an IE table. IE allows you to compare all kinds of
strategies (solutions) against your requirements.

Impact Estimation 265

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH009.3D – 261 – [261–290/30] 29.6.2005
12:43PM

Now, we could just write the handbook, and hope we shall meet
our objectives. But the purpose of IE is to get us to think before
we implement. So, let us make an estimate of how effective this
idea is. How many minutes will be needed to learn the defined
task ‘Response’ using the handbook? The likely initial answer is,
‘‘we cannot possibly know.’’ ‘‘Why?’’ Well, maybe we don’t even
know the written handbook can, or will, be used by the user.
Maybe we don’t know if the handbook (assuming it can and will
be used) is capable of reducing the learning time compared to last
year’s training methods (Past level). We might also not have a
sufficiently clear and unambiguous definition of the task,
Response. The conclusion to this line of thinking is that we need
to have a much better design and more detailed specifications in
order to make any assertions whatsoever. It is precisely this pro-
blem of inadequate design and lack of information that we want
to identify and attack by using IE.

Well, let us for this example try a symbolic improvement of the design
ideas to meet the goal. We need to identify some alternative design
ideas and assess their impact on our Learning goals. We can draw on
any previous experience with the use of a design idea. Say, on a
different project, the design idea On-line Help had achieved Past
[<similar task>] 10 minutes. What do we think based on that? Let
us say, we guess a learning time of 10 minutes average (minimum
5 minutes, maximum 15 minutes):

Impact Estimate for impact of On-line Help on Learning¼ 10" 5
minutes? <- Based on <similar design> used by Project A.

We can then express this guess as a ‘percentage of the way to the goal.’
We must decide on which of the goals, GA or GN? Say, the GA goal
of 10 minutes. Well, the guess is also 10 minutes, so we have a design,
which appears to get us 100% of the way to our GA goal. The
uncertainty, "5 minutes, is 10% (from Past¼ 60 minutes to
Goal¼ 10 minutes is 50 minutes improvement). So we can express
the impact as either 10" 5 minutes (a Scale Impact estimate) or
100%" 10% (a Percentage Impact estimate).

In practice, we would have to evaluate the effect of all design ideas on
all goals and budgets. See Figure 9.5. We are not ‘done’ until we
have satisfied all performance goals (100% or more) within all
budgets (100% or less). In the worst case, if the design ideas com-
pletely fail to meet the requirements and there are no additional
design ideas that could be considered, we have to modify the goals
and/or budgets (make ‘tradeoffs’). There must be a correspondence
between your plans and the realities of what you can actually achieve.
Of course, do not lose sight of the fact that the real test is trying out
the chosen design ideas in practice to see how they really work in
reality.

266 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH009.3D – 261 – [261–290/30] 29.6.2005
12:43PM

Table 9.1 An Impact Estimation table showing the impacts of the design ideas described in
Figure 9.4 on the Learning objective.

On-line Support On-line Help Picture
Handbook

On-line Help
þ Access Index

Learning
60minutes <-> 10minutes

Scale Impact 5 min. 10 min. 30 min. 8 min.

Scale Uncertainty "3min. "5min. "10min. "5min.

Percentage
Impact

110% 100% 60% 104%

Percentage
Uncertainty

"6%
(3 of 50 minutes)

"10% "20%? "10%

Evidence Project
Ajax: 7 minutes

Other Systems Guess Other Systems
þ Guess

Source Ajax Report, p.6 World Report,
p.17

John B World Report,
p.17 þ John B

Credibility 0.7 0.8 0.2 0.6

Development Cost 120K 25K 10K 26K

Performance
to Cost Ratio

110/120¼ 0.92 100/25¼ 4.0 60/10¼ 6.0 104/26¼ 4.0

Credibility-adjusted
Performance
to Cost Ratio
(to 1 decimal place)

0.92*0.7¼ 0.6 4.0*0.8¼ 3.2 6.0*0.2¼ 1.2 4.0*0.6¼ 2.4

Notes: Time Period
is two years.

Longer timescale
to develop

Notes: Here it is a case of comparing design ideas. It is not appropriate to assume that the effects of the different
design ideas are cumulative. The design idea of Picture Handbook is seen as very cost-effective, but it doesn’t on
its own meet the goals. Maybe there is a complementary design idea that could be found? On-line Support is seen
as achieving the goals (though the safety margin is not extremely comfortable) but, it is not very cost-effective
compared to On-line Help and the development timescales need considering. Overall, there is a need to review
the long term strategy. Short term, On-line Help seems an ideal design idea to start considering further.

Design Ideas

On-line Support: Gist: Provide an optional alternative user interface, with the users’ task
information for defined task(s) embedded into it.
On-line Help: Gist: Integrate the users’ task information for defined task(s) into the user
interface as a ‘Help’ facility.
Picture Handbook: Gist: Produce a radically changed handbook that uses pictures and
concrete examples to instruct, without the need for any other text.
Access Index: Gist: Make detailed keyword indexes, using experience from at least ten real
users learning to carry out the defined task(s). What do they want to look things up under?

Figure 9.4
Brief description of some design ideas to improve learning time.

Impact Estimation 267

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH009.3D – 261 – [261–290/30] 29.6.2005
12:43PM

9.3 Language Core: Impact Estimation

The inputs to IE include:

. Specified quantified Performance Requirements (objectives) and
Resource Requirements. (This is usually for a specific system/
project deadline, and usually consists of the goals with supporting
baseline information, and the budgets.)

. Specified Design Ideas with experience data (Evidence, Sources and
basis for Credibility assessments).

. Standard Credibility Ratings and Safety Margins. (These will either
exist in rules or policies or theymust be decided locally by the project.)

The outputs from IE include:

. IE tables: 2- and/or 3-dimensional graphical diagram(s).

. Estimations and calculations for the impacts of each of the specific
design ideas on each of the specific goals and each of the specific
budgets:

o Scale Impact and Scale Uncertainty values: What estimated
impact does a specific design idea have on a specific goal or budget
and, what is themargin for error or doubt? A Scale Impact is expressed
as a numeric value on the defined Scale (For example, if the scale of
measure was in hours, the value could be 10 hours). A Scale Uncer-
tainty is the plus/minus errormargin or experience range estimated for
the Scale Impact value (for example, "2 hours). Estimates must be
based on experience data; Evidence, Source and Credibility must
therefore be stated, or referenced, to support each estimate.

o Percentage Impact and Percentage Uncertainty values: What
percentage of the required change in a specific goal or budget does
a specific design idea provide? For a goal (a performance objective),
a Percentage Impact is calculated as the percentage change (that is,
the ability to move) from the chosen baseline level (0%) towards a
specified target level (100%). (0% would mean there was no
change/improvement on the existing past level and 100% would
mean the target goal was met exactly. All other percentage estimates
are in relation to these two values.) For a budget, a Percentage
Impact is the percentage of the budget that is estimated will be
consumed or utilized. Percentage Uncertainty values for budgets
are calculated in a similar way to goals. Note: Sometimes it is
appropriate to declare an overall Percentage Uncertainty (for example,
"50%) for the whole IE table or specified parts of it.

Calculated values for each individual design idea (the ‘vertical sums’):

o Sum of Performance: How ‘good’ is a design idea? Sum of
Performance is the sum of all the estimated Percentage Impacts
achieved by the design idea across all the performance

268 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH009.3D – 261 – [261–290/30] 29.6.2005
12:43PM

requirements (objectives). There is also a need to sum the relevant
Percentage Uncertainty impacts.

o Sum of Costs or Sum of Scale Costs: How costly is a design idea?
Sum of Costs and Sum of Scale Costs are the sums of the Percen-
tage Impacts or the Scale Impacts respectively that have been
estimated for a specific design idea across all the appropriate
budgets. (For example, it is likely to be ‘appropriate’ to use only
the total financial cost figures, though the IE table might also show
detailed person work-hours as a ‘cost’ row.) There is also a need for
the sums of the relevant uncertainty impacts (the Percentage
Uncertainty and/or Scale Uncertainty values as appropriate).

o Performance to Cost Ratio: How cost-effective is a design idea? The
performance to cost ratios can be calculated either as Sum of Perfor-
mance/Sum of Costs or, Sum of Performance/Sum of Scale Costs.

Calculated sums for each individual requirement (the ‘horizontal’ sums):

o Sum for Requirement: Is this requirement likely to be met and
what is the margin for error or doubt? Sum for Requirement is the
sum of the Percentage Impacts of the selected sets of design ideas
on a specific requirement. The sums for the relevant Percentage
Uncertainty impacts also need to be calculated.

o Safety Deviation: How much risk can be tolerated? This is the
deviation of Sum for Requirement from the relevant Safety Margin.
A minimum Safety Margin of factor 2 must be assumed by default
(this translates to 200% for performance requirements and, to 50%
for resource requirements). Include appropriate uncertainty (") data.

Other IE Process Outputs:

o Credibility-Adjusted Values: The sums obtained by repeating all
the calculations using the credibility-adjusted estimates (that is
after multiplying each estimate with its relevant Credibility).

o Credibility Averages: The set of credibility-adjusted values for
Sum for Requirement can be averaged to give a figure for the
overall likelihood of meeting the requirements. Also the credibility-
adjusted Performance to Cost Ratios for the selected design ideas
can be averaged. There might be a specified design standard for
performance to cost ratios, or stakeholder benefit to cost ratios
that has to be exceeded before any budget will be allocated (for
example, a specific ratio of Return on Investment (ROI)).

o Revised Requirements: Working through an IE table might lead
to a revision of expectations, or some new requirements (espe-
cially objectives) might well be identified.

o Revised Design Ideas
o Notes and Comments: It is important to capture the ideas and
assumptions that are identified while working through an IE table.

o Conclusions and Presentations: The results of analyzing an IE
table including risk analysis, gap analysis and recommendations.

Impact Estimation 269

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH009.3D – 261 – [261–290/30] 29.6.2005
12:43PM

Table 9.2 Simple IE table illustrating some of the components of an IE table

Design Ideas->

Requirements:
Goals and Budgets

Idea 1
Impact
Estimates

Idea 2
Impact
Estimates

Sum for
Requirement
(Sum of Percentage
Impacts)3

Sum of
Percentage
Uncertainty
Values4

Safety
Deviation5

Reliability 1950 hr 1140 hr
300 <-> 3000
hours MTBF

(1650 hr)
"01

61%" 02

(840 hr)
"240

31%" 9% 92% " 9% $108%

Usability 19min. 14min.
20 <-> 10
minutes

(1min.)
"4

10%" 40%

(6 min.)
"9

60%" 90% 70% "130% $130%

Maintenance 1.1M $/Y 100K S/Y
1.1M <-> 100K
USdollars/year

(0K$/Y)
"180K

0%" 18%

(1 M$/Y)
"720K

100%" 72% 100% "90% $50%

Sum of
Performance6 71% 191%

Capital 500K 100K
0 <-> 1M
USdollars

(500K)
"200K

50%" 20

(100K)
"200K

10%" 20 60% "40% $10%

Sum of Costs7 50% 10%

Performance
to Cost Ratio8

1.42
(71/50)

19.10
(191/10)

Notes:
1. Time Period: Within next 12 months.
2. Same Safety Margin of factor 2 has been declared for performance requirements and resource requirements. Factor

2 means minimum planned performance requirements > 200% of target (goal), and maximum planned costs
<50% of target (budget).

3. Evidence, Source and Credibility not stated.
Key :
1 Scale Impact estimate, (Incremental Scale Impact) and Scale Uncertainty estimate.
2 Percentage Impact estimate with Percentage Uncertainty estimate.
61%¼ (1650/(3000$ 300¼ 2700))% 100
31%¼ (840/(2700))% 100, "9%¼ (240/2700)% 100
10%¼ (1/(20$ 10))% 100, "40%¼ (4/(20$ 10))% 100
60%¼ (6/(20$ 10))% 100, "90%¼ (9/(20$ 10))% 100
0%¼ (0/(1.1M$ 100K))% 100, "18%¼ (180K/(1,1M$ 100K))% 100
100%¼ (100K/(1.1M$ 100K))% 100, "72%¼ (720K/(1.1M$ 100K))% 100

3 Sum of Percentage Impacts on a single requirement (Sum for Requirement).
4 Sum of plus/minus Percentage Uncertainty impacts on a single requirement.
5 Statements of deviation from required Safety Margins (Safety Deviation). Value calculated by (Sum for
Requirement – Safety Margin). $108%¼ 92 – 200 (expressed as a negative value)

6 Sum of all performance Percentage Impacts for a single design idea (Sum of Performance).
7 Sum of cost Percentage Impacts for a single design idea (Sum of Costs).
8 Calculation of the ratio of the sum of the percentage performance improvements to the sum of the percentage costs for
each design idea (Performance to Cost Ratio).
The results identify that Idea 2 is better than Idea 1.

270 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH009.3D – 261 – [261–290/30] 29.6.2005
12:43PM

9.4 Rules/Forms/Standards: Impact Estimation

Tag: Rules.IE.

Version: October 7, 2004.

Owner: TG.

Status: Draft.

Base: The generic rules, Rules.GS and the requirement specification
rules, Rules.RS apply.

R1: Table Format: The requirements must be specified in the
left-hand column. The design ideas must be specified along the top
row.

R2: Requirement: Each performance requirement (objective) and
each resource requirement must be identified by its tag and by a
simplified version of the chosen Baseline<->Target Pair (B<->T
pair). The B<->T pair should be written under the tag.

Each B<->T pair must consist of two reference points, the chosen
baseline (Past) and the planned target (Goal or Budget). Each refer-
ence point must be stated as a numeric value or as a tag to a numeric
value. The numeric values must be expressed using the chosen Scale
for the requirement.

The baseline is stated first as it represents the 0% incremental impact
point. Then usually an arrow ‘<->’. Then the planned target, which
represents the 100% incremental impact point.

It must be possible to distinguish between multiple-level specifications
for the same Goal or Budget statement. Where necessary, to be
unambiguous, use a qualifier or tag the specific baseline and/or target
for use in the IE table.

EXAMPLE Reliability:
Type: Performance Requirement.
Baseline<->Target Pair:

Benchmark Reliability <-> 30,000 hours [USA, Next Year].
Note: Reliability and Benchmark Reliability are tags.

R3: Qualifiers: If there is one common set of qualifier [time,
place and event] conditions for reaching all targets, this should
be explicitly stated in the notes accompanying the IE table. If the
qualifiers vary then they must be explicitly stated next to the
relevant B<->T pair.

Impact Estimation 271

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH009.3D – 261 – [261–290/30] 29.6.2005
12:43PM

By default, the entire system is implied and no specific conditions
are assumed. The deadline time period must always be explicitly
stated.

R4: Design Idea: Each single column must identify a design idea or
set of design ideas that could be implemented as a distinct Evo step.
Each design idea must be identified by its tag. Multiple tags may be
specified as a set of design ideas in a single column. All tags must
be supported by a design specification, which must exist in the
supporting documentation and must be sufficiently detailed to
allow impact estimations to the required level of accuracy. As
a minimum, each design specification must be sufficiently detailed
to permit financial cost to be estimated to within an ‘order of
magnitude.’

R5: Scale Impact: For each goal or budget, the Scale Impact is the
estimated or actual performance or cost level respectively (expressed
using the relevant Scale) that is brought about by implementing the
design idea(s) in each column.

R6: Percentage Impact: The Percentage Impact is a percentage (%)
value derived from the Scale Impact (see Rules.IE.R2). An estimate
of zero percent, ‘0%,’ means the impact of the implementation of
this design idea is estimated to be equal to the specified baseline
level of the objective. ‘100%’ means the specified target level would
probably be met exactly and on time. All other percentage estimates
are in relation to these two points. Note: In an IE table, it is
acceptable to specify either Percentage Impacts and/or the Scale
Impacts (the absolute values on the defined scale of measure).
Examples: 60%, 4 minutes.

R7: Uncertainty: The " Uncertainty (based on the evidence
experience borders) of the Scale Impact estimate shall normally
be specified. Percentage Uncertainty values are then calculated in
a similar way to the Percentage Impacts. Example: 60%" 20%.
Usually, the uncertainty values are calculated individually for
each cell. An exception to this occurs when some overall uncer-
tainty (such as "50%) is declared for the whole table or specified
parts of it. Another more fundamental exception can be when a
decision is made to defer dealing with uncertainty data.

R8: Evidence: Each estimate must be supported by facts that
credibly show how it was derived. Numbers, dates and places are
expected. If there is no evidence, a clear honest risk-identifying state-
ment expressing the problem is expected (such as ‘Random Guess’ or
‘No Evidence’). The exact source of the evidence must also be expli-
citly stated. Note: Reference to a specific section of a document is
permitted as evidence.

272 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH009.3D – 261 – [261–290/30] 29.6.2005
12:43PM

R9: Credibility: The evidence, together with its source, must be
rated for its level of credibility on a scale of 0.0 (no credibility) to
1.0 (perfect credibility).

The relevant standard Credibility Ratings Table must be considered
for use. Explanation must be given if alternative ratings are chosen.

R10: Completeness: All IE cells (intersections of a design idea and
a requirement) must have a non-blank statement of estimated
impact. This must be given as a numeric value using the relevant
Scale units, or as a Percentage Impact as assessed against the defined
Baseline <->Target Pair, or both. If there is no estimate, then a clear
indication of this must be given.

R11: Calculations: All the appropriate IE calculations must be
carried out and the arithmetic must be correct. Hint: Using an
application, such as a spreadsheet, helps! The IE calculated values
include:

. Percentage Impact: See Rule R6.

. Percentage Uncertainty: See Rule R7.

. Sum of Performance: For each design idea, an algebraic sum of its
Percentage Impacts on all the performance requirements. (A ‘ver-
tical’ sum.)

. Sum of Costs: For each design idea, an algebraic sum of all its
Percentage Impacts on the selected resource requirements.
(‘Selected’ as it might well not make sense to sum all the costs
represented in an IE table.) (A ‘vertical’ sum)

. Sum of Scale Costs: For each design idea, an algebraic sum of all its
Scale Impacts on the selected resource requirements. (A ‘vertical’ sum.)

. Performance to Cost Ratio: The performance to cost ratios are
calculated using either (Sum of Performance/Sum of Costs or
Sum of Performance/Sum of Scale Costs).

. Sum for Requirement: For each requirement, an algebraic sum of all
the Percentage Impacts for the simultaneously applicable and com-
patible design ideas. (A ‘horizontal’ sum.)

. Safety Deviation: For each requirement, subtract the Safety Margin
from the Sum for Requirement. The relevant standard safety margin
must be considered for use. Explanation or justification must be
given if an alternative safety margin is chosen for use. By default, a
standard safety margin of factor 2 (200% for performance require-
ments, 50% for budgets) will be used. For example, if the required
safety margin is 200% and Sum for Requirement for a performance
requirement is 120%, then ‘‘–80%’’ is the deviation to be displayed.
(A ‘horizontal’ sum.)

. Calculate all the relevant (") uncertainty values. Base this on best
case and worst case observations or estimates.

Impact Estimation 273

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH009.3D – 261 – [261–290/30] 29.6.2005
12:43PM

Table 9.3 Example of a Credibility Ratings Table

Credibility Rating Meaning

0.0 Wild guess, no credibility

0.1 We know it has been done somewhere

0.2 We have one measurement somewhere

0.3 There are several measurements in the estimated range

0.4 The several measurements are relevant to our case

0.5 The method used to obtain the several relevant measurements
is considered reliable

0.6 We have used the method/design/idea/strategy in-house

0.7 We have reliable measurements for the design idea in-house

0.8 Reliable in-house measurements correlate to independent external
measurements

0.9 We have used the idea on this project and measured it (Evo step,
pilot and field trial)

1.0 Perfect credibility, we have rock solid, contract-guaranteed,
long-term and credible experience with this idea on this project and,
the results are unlikely to disappoint us

Impact
Estimation

(IE)

Requirements
with Source(s)

Design
Specifications

with
Experience

Data

IE Table
with specific

Evidence
And Sources

Risk Analysis,
Gap Analysis,
Stakeholder

Presentations
and Evo Plan

Recommendations

Updated
Requirements
with Source(s)

Updated
Design

Specifications
with

Experience Data

Figure 9.5
Overview of the Impact Estimation Process.

274 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH009.3D – 261 – [261–290/30] 29.6.2005
12:43PM

Input to IE Table the Requirement
Tags, Baseline<->Target Pairs

and Design Idea Tags

Specify Time Period(s) and
Safety Margin(s)

Calculate Performance to Cost Ratios

Identify IE Purpose(s)

Sum the relevant Percentage Impacts,
Scale Cost (if appropriate)

and Percentage Uncertainty estimates,
(that is, determine Sum of Performance,
Sum of Costs (or Sum of Scale Costs),

Sum Requirement and Uncertainty values)

Calculate Safety Deviations

Estimate Scale Impact,
Scale Uncertainty

and Credibility values.
Document Evidence and Sources

Calculate values adjusted for
Credibility

Calculate averages adjusted
for Credibility

Calculate Percentage Impact and
Percentage Uncertainty values

Start

End

Figure 9.6
Creating an IE table.

Impact Estimation 275

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH009.3D – 261 – [261–290/30] 29.6.2005
12:43PM

R12: Credibility-Adjusted Calculations: Do not get carried away with
these credibility calculations if they are not adding significant value. They
are meant to force you to think about risks.

Multiply all the values for Scale Impact, Percentage Impact and
Uncertainty by their Credibility. Repeat the calculations described
in Rule R11 using the credibility-adjusted values.

For each Design Idea: Calculate the credibility-adjusted average
(Design Idea Credibility Average) by dividing the sum of its cred-
ibility-adjusted Percentage Impacts for all the performance require-
ments by the number of performance requirements being considered.
(A ‘vertical’ sum.)

For each Requirement: Calculate the credibility-adjusted average
(Requirement Credibility Average) by dividing the sum of its
credibility-adjusted Percentage Impacts for all the relevant design
ideas by the number of relevant design ideas. (A ‘horizontal’ sum.)

9.5 Process Description/Standards: Impact
Estimation

Process: Impact Estimation

Tag: Process.IE.

Version: October 7, 2004.

Owner: TG.

Status: Draft.

Entry Conditions

E1: The Generic Entry Conditions apply. The main input documents
are the requirement specification and the design specifications.

Note: It is extremely important that the requirement specification is
SQC exited. Note also that the Credibility of the Evidence and
Source(s) will be independently rated during IE, regardless of whether
the design specifications are SQC exited.

Procedure

P1: Identify your ‘purpose’ for the IE table. Decide how to use the table
for your defined purposes. Are you using IE for ‘self-analysis,’ ‘presen-
tation to authorities,’ ‘control of design engineering or planning pro-
cess,’ ‘project control,’ ‘comparison of alternatives’ or others? The

276 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH009.3D – 261 – [261–290/30] 29.6.2005
12:43PM

purpose and audience determine what you do with the table and how
rigorous and formal you are. See Figure 9.2, ‘Purposes for the use of IE’.

P2: Use the rules, Rules.IE, to fill out an IE table to the best of your
ability. This implies that all the IE calculations are done, perhaps
using a software application (see footnote 4 at the end of Section 9.9).

P3: Be honest and open. Document where insufficient information is
available, and where guesses are being made. Make liberal use of ‘?’
and other ‘uncertainty’ indicators. Remember, the IE table is there to
help you see potential problems, not to cover them up!

P4: Analyze Risks. Specify risks in your report or presentation. For
example, as footnotes to the IE table. Try the following:

. Study the requirements again. Which ones are ‘shaky’? Look for
‘<fuzzy>’, ‘?’, dubious sources and admitted guesses.

. Study the design specifications again. Are they really specific and
detailed enough to merit the estimates? Is the evidence really good
enough to ‘stand up in a court’ of skeptics?

. Study the table itself for gaps to targets. For example, consider the
gaps to the goal targets. Also look at the safety deviations. Docu-
ment any gap problems that you identify and suggest actions.

P5: Identify the areas that deserve more time-demanding analysis, and
work more on them. For example, you should select areas of the table
with low credibility, high uncertainty and large shortfalls in meeting
goals or budgets.

P6: Make improvements and changes to requirements, designs, and
evidence. Re-calculate the table.

. The owners of these requirements and design must be involved
ultimately. Are you being ambitious enough?

P7: Decide which issues need to be settled ‘in the field’ by (Evo steps,
prototypes, market trials, field experiments).

. Make specific recommendations about which areas need early prac-
tical measurement. Show the estimated impacts of implementation
of the different design ideas.

P8: Decide on presentation. Topics you should consider covering
include the level of IE table, the requirement hierarchy, key ‘focus’
issues, graphics, alternative design ideas, risk analysis and suggested
actions.

. Bring out the main conclusion. Bring out the risks and dangers.
Show the effect of any suggested alternatives.

P9: Make presentations to (colleagues, formal reviews, stakeholders,
experts, key managers).

Impact Estimation 277

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH009.3D – 261 – [261–290/30] 29.6.2005
12:43PM

Hint: Choose to present first to informal friends, rather than making a
fool of yourself by lack of preparation in front of your managers and
stakeholders.

Exit Conditions

X1: The Generic Exit Conditions apply. The IE table and all its
related data (such as evidence) shall exit from Specification Quality
Control (SQC) with no more than one remaining major defect/page.

. Formally, the table can only be used in other processes when it has
exited from SQC. In practice, the purpose and the audience, deter-
mine what you are going to demand as exit conditions. The precise
exit conditions need to be defined locally.

9.6 Principles: Impact Estimation

1. The Principle of ‘Words being difficult to weigh’
Non-numeric estimates of impact are difficult to analyze and
improve upon. A design idea described as ‘excellent’ could actually
be worse than another merely described as ‘good.’

2. The Principle of ‘Doubtful digits are better than none’
A bad numeric estimate, and its definition, can still be system-
atically criticized and improved. In fact, a random number is a
better starting estimate than flowery, descriptive words.

3. The ‘Evident’ Principle
Estimates without sources, evidence and credibility are not evident.

4. The Principle of ‘Uncertainty in no uncertain terms’
The uncertainty estimate is at least as important as the main
estimate.

5. The Principle of the ‘Seat Belt’
A safety margin is as necessary with uncertain estimates, as a seat
belt is with uncertain traffic.

6. The Principle of ‘Profitable Proposals’
The value of an idea is how well it meets objectives. The net value
considers the costs too.

7. The Principle of ‘the Swiss Army Knife’
Impact Estimation is a multi-purpose method. It can help you in
many situations: to evaluate, to compare, to present, to argue, to
destroy, to find weaknesses, to cut fat, to see risk, to prioritize, to
sequence and more.

278 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH009.3D – 261 – [261–290/30] 29.6.2005
12:43PM

8. The Principle of ‘Always Useful’
Impact Estimation can assist a project throughout its lifecycle –
from identifying requirements to assessing feedback data from
implemented systems.

9. The Principle of ‘Multiplicity’
When stakeholders have multiple requirements, then we need to
evaluatemultiple designoptions against all those requirements includ-
ing considerations of value, in order to make a reasonable choice.

10. The Efficiency Principle
When real life has many stakeholder values, and many cost
constraints, then evaluation of designs (strategies) must be done
with respect to both the values and the costs.

Note other options include:

• Percentage Impact towards the Fail levels (Levels of no failures)
• Percentage Impact towards the Survival levels (Levels for survival)
• Other Percentage Impacts towards the Goal/Budget levels (target
 levels) for other qualifier conditions. (For example, different dates)
• Owner of estimate: Tom

0.6

“Project
post mortem”

± 20%

50%

600 hours

For Design Idea Y

Scale Impact

Percentage Impact
(% of the way from the baseline
to the target)

Percentage Uncertainty
(plus and minus)

Evidence for estimates

Source of the Evidence

Credibility of the estimates

“Results from
Project ABC”

Cell Data

Figure 9.7
The Data in an IE Cell for a Performance Attribute.

Impact Estimation 279

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH009.3D – 261 – [261–290/30] 29.6.2005
12:43PM

9.7 Additional Ideas: Impact Estimation

Understanding Mathematical Inaccuracy

Let me stress that IE provides only rough, practical calculations.
Adding impacts of different, independent estimates for different
design ideas, which are part of the same overall architecture, is
dubious in terms of accuracy. There are bound to be interactions,
which we are unable to predict in advance of implementation.

This admission of mathematical inaccuracy often annoys people; on one
hand, I’m demanding numeric values and, on the other, I’m admitting
to a lack of accuracy! There is no absolute defense for this, apart from
saying we can only try our best; quantitative values far better convey
understanding than words and they permit calculations to be carried out.

Let me add an additional cautionary note that I expect IE estimates
only to be used as a rough indicator to help designers spot potential
problems or select design ideas. Any real estimation of the impact of
many design ideas needs to be made by real tests; ideally, by measur-
ing the results of early evolutionary steps in the field.

Level of Detail

Understanding your specific purposes for using IE is key to how you
actually use the method. These purposes determine how rigorous and
formal you are. If you are using IE in brainstorming mode to generate
new design ideas and to check you have the right set of requirements,
then rough numeric estimates will suffice. If you are establishing
which are the most cost-effective design ideas, then more detailed
impact estimations will be necessary.

Coping with Interactions amongst Design Ideas

Considering Side Effects

Negative impacts do occur! It is fairly common for a design idea to
impact on certain objectives very positively and yet negatively on others.

Dealing with Alternatives

Take care that you are not adding together the percentage impacts of
mutually exclusive design ideas.

Dealing with Dependencies

Design ideas can be dependent on each other or their impacts can
differ depending on what other design ideas have been implemented

280 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH009.3D – 261 – [261–290/30] 29.6.2005
12:43PM

in advance of them, or even those implemented later. Consider group-
ing dependent design ideas into a set and evaluating as a set within an
IE table.

Priority Management within IE

People often ask why I don’t use ‘ranking’ or subjective weights for
priority. The answer is that IE handles priority implicitly. You in-
build the priorities when you specify the required performance levels
over time (Goal levels with time conditions).

Note, this does not mean that you don’t discuss priority. You do! You
definitely need to understand the priorities when setting and modify-
ing your requirements.

Can We Always Use the Stated Requirements to Determine
Priority?

The stakeholder value derived from meeting a goal or other require-
ment, wholly or partly, has also to be considered. There are many
factors, for example, meeting one goal can be very much more reward-
ing than meeting another, the value derived can vary from stakeholder
to stakeholder, or the value can vary according to where the design idea
is delivered. So, the question arises, should the project manager decide
the priority by looking at the goals they have been given officially, or
should they somehow try to figure out what the consequential value is
for satisfying a requirement, and get closer to a more realistic priority?

Here are some possible answers:

. they should stick to their official goals and other requirements

. they should look to any vision statement(s) and policy statement(s)
for direction. If the requirements are not good enough to motivate
them in the right direction (that is, do not live up to the vision and
policy statement(s)), then this may be an indicator that they should
get a reformulated set of requirements at the appropriate level,
which reflect value better.

. they can ask key stakeholders exactly which of the unfinished
requirements should have priority ‘this week’ (a common practice
in Evolutionary Project Management).

Priority for a designer or manager is to reach the stated goals (perfor-
mance targets) within the stated budgets (for people, time and money)
under the stated conditions. Efforts must be focused towards trying to
make the maximum progress, in the direction of immediate goals, at
all times. If a specific goal has priority, it has claim on our resources
(our budgets) for satisfying that goal.

Impact Estimation 281

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH009.3D – 261 – [261–290/30] 29.6.2005
12:43PM

This is not a simple static problem. Priority changes when any of the
following change:

. The design or implementation distance to ‘survival levels’ (Survival)
for a specific performance goal

. The distance to ‘success levels’ (Goal) for a specific performance goal

. The availability of a given type of resource (for example, if you don’t
have ‘money’, then use ‘time’ instead)

. The uncertainty of an idea: the factors effecting this are evidence,
sources, plus/minus uncertainty and the credibility rating.

Such changes occur as a result of the order of implementing design
ideas, feedback from the field and changes in the business

Function S Performance Q

Past
Level
0%

Goal
Level
100%

Design
Idea A

Design
Idea B

Design
Idea C

Design
Idea D

Design
Ideas E + F

Design
Idea B

All proposed design ideas are supposed to contribute to our ability to reach the planned
performance levels within the planned resource levels.

For a specific requirement, Performance Q:

• Design Idea A is estimated to move us halfway towards a stated goal.
• Design Idea B, implemented after Design Idea A, is estimated to bring us the rest of the
 way, and perhaps give more than our goal.
• Design Idea B implemented first, before Design Idea A, is not as effective for this
 performance attribute.
• Design Idea C almost delivers all the required improved performance level on its own.
• Design Idea D has a negative effect on his performance attribute.
• Design Idea E and Design Idea F are totally dependent on each other and must therefore
 be considered together.
 Insight: IE allows us to evaluate partial solutions in various combinations, and pick a
 satisfactory combination.
 Recommendation: Use IE to look at combinations of solutions, so that your selection is
 better.

Figure 9.8
Design Idea Contributions.

282 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH009.3D – 261 – [261–290/30] 29.6.2005
12:43PM

environment; change in priority is almost inevitable. Priorities vary
depending on the ‘gaps’ between the current level and the target level;
the ‘larger’ a gap in relation to the other gaps, then the more likely it is
to demand attention. We can use an IE table as a tool for determining,
calculating and visualizing our current priorities.

It is our decision how we manage our priorities. We can use the IE
table to manage both the initial design and implementation phases
of projects, and ensure that projects are tailored to our current
priorities.

Managing Risk: Building in Safety Margins

Priority management (above) is one way of managing risk. However,
IE also has an additional mechanism – the use of safety margins. By
explicitly designing to overreach your requirements, you can better
ensure that you actually reach the requirements. Note that just because
you have additional design ideas, does not mean that you have to
implement them all!

Highlighting System Failure and System
Survival Levels

Another way to control risk is to monitor it more explicitly by using
Fail levels or Survival levels, rather than Goal levels, in IE tables. Fail
levels reflect the levels of requirements that must be achieved to avoid
any project failure. Survival levels reflect the levels of requirements
that must all be reached for the project to survive. Obviously, when
working with the project critical values, the choice of Safety Margin(s)
becomes a crucial issue.

9.8 Further Example/Case Study: IE Table for US
Army Personnel System Long Term Planning

Here are extracts from a larger study to show you use of the IE method
in the ‘real world’.

Table 9.4 was produced during a study of the improvement of a US
Army Personnel system. The requirements (left column) were specified
in detail and quantified. A sample of the Customer Service objective is
given below to give the reader some idea of this detail. Notice that as
well as the stakeholder objectives being evaluated on this chart, two of
the cost aspects for the proposed strategies (design ideas) are also
estimated. This makes it possible to see the relative ‘bang for buck’ of
each strategy (by calculating the performance to cost ratio). Comparison

Impact Estimation 283

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH009.3D – 261 – [261–290/30] 29.6.2005
12:43PM

T
ab
le

9.
4

E
xa
m
pl
e
of

a
re
al
Im

pa
ct

E
st
im

at
io
n
ta
bl
e
fr
om

a
pr
o-
bo
no

cl
ie
nt

(U
S
D
oD

,
U
S
A
rm

y,
P
er
si
nc
om

).

D
es
ig
n
Id
ea
s
->

T
ec
hn
ol
og
y

In
ve
stm

en
t

B
us
in
es
s

Pr
ac
ti
ce
s

Pe
op
le

E
m
po
w
er
m
en
t

Pr
in
ci
pl
es
of

IM
A
M
an
ag
em

en
t

B
us
in
es
s
Pr
oc
es
s

R
e-
en
gi
ne
er
in
g

Su
m

R
eq
ui
re
m
en
ts

C
us
to
m
er

Se
rv
ic
e

50
%

10
%

5%
5%

5%
60

%
18

5%
?
<
->

0
V
io
la
ti
on

of
ag
re
em

en
t

A
va
ila
bi
lit
y

50
%

5%
5–

10
%

0%
0%

20
0%

26
5%

90
%

<
->

99
.5
%

U
p
ti
m
e

U
sa
bi
lit
y

50
%

5–
10

%
5–

10
%

50
%

0%
10

%
13

0%
20

0
<
->

60
R
eq
ue
st
s
by

U
se
rs

R
es
po
ns
iv
en
es
s

50
%

10
%

90
%

25
%

5%
50

%
18

0%
70

%
<
->

E
C
P
’s
on

ti
m
e

P
ro
du

ct
iv
it
y

45
%

60
%

10
%

35
%

10
0%

53
%

30
3%

3:
1
R
et
ur
n
on

In
ve
st
m
en
t

50
%

5%
75

%
45

%
15

%
61

%
25

1%
M
or
al
e

72
<
->

60
pe
r
m
on

th
on

Si
ck

L
ea
ve

D
at
a
In
te
gr
it
y

42
%

10
%

25
%

5%
70

%
25

%
17

7%
88

%
<
->

97
%

D
at
a
E
rr
or

%

T
ec
hn

ol
og
y
A
da
pt
ab
ili
ty

5%
30

%
5%

60
%

0%
60

%
16

0%
75

%
A
da
pt

T
ec
hn

ol
og
y

R
eq
ui
re
m
en
t
A
da
pt
ab
ili
ty

80
%

20
%

60
%

75
%

20
%

5%
26

0%
?
<
->

2.
6%

A
da
pt

to
C
ha
ng
e

R
es
ou
rc
e
A
da
pt
ab
ili
ty

10
%

80
%

5%
50

%
50

%
75

%
27

0%
2.
1M

<
->

?
R
es
ou
rc
e
C
ha
ng
e

C
os
t
R
ed
uc
ti
on

50
%

40
%

10
%

40
%

50
%

50
%

24
0%

F
A
D
S
<
->

30
%

T
ot
al
F
un

di
ng

Su
m

of
Pe
rf
or
m
an
ce

48
2%

28
0%

30
5%

39
0%

31
5%

64
9%

M
on

ey
%

of
to
ta
l
bu

dg
et

15
%

4%
3%

4%
6%

4%
36

%

T
im

e
%

to
ta
l
w
or
k
m
on

th
s/
ye
ar

15
%

15
%

20
%

10
%

20
%

18
%

98
%

Su
m

of
C
os
ts

30
19

23
14

26
22

Pe
rf
or
m
an
ce

to
C
os
t
R
at
io

16
:1

14
:7

13
:3

27
:9

12
:1

29
:5

284 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH009.3D – 261 – [261–290/30] 29.6.2005
12:43PM

of these performance to cost ratios can be used to decide what to invest
in initially (in the early stages of the change process). The strategies were
also detailed; only the strategy tag is given at the top of the table. One
strategy, ‘Technology Investment’ is detailed at the Gist level below. The
estimates are made in round numbers (nearest 5%). In the full study,
Evidence and Sources were given. This was the first time anybody we
had contact with there had seen an Impact Estimation table. The
General insisted that the analysis and presentation work were taken
seriously and done to a reasonable standard.

EXAMPLE Customer Service: ‘‘An example of one of the objectives defined.’’
Gist: Improve customer perception of quality of service provided.
Scale: Violations of Customer Agreement per Month.
Meter: Log of Violations.
Past [Current Date]: <number of violations> <- Management Review on State of
Persincom.
Record [NARDAC]: 0? <- NARDAC Reports [This Year].
Fail: <better than Past> <- CG.
Goal [By End of This Year, Persincom]: 0 ‘‘Go for the Record’’ <- Group SW.

EXAMPLE Technology Investment: ‘‘An example of one of the strategies defined.’’
Defined As: Exploit investment in high return technology.
Impacts: Productivity, Customer Service.

9.9 Diagrams/Icons: Impact Estimation

Presentation of IE Tables

Always consider your audience when presenting IE tables. It is very
easy to present too much detail at once. If you are presenting to
management, you must use a high-level representation of the IE table.
However, always have the detailed version available to support their
more searching ‘tough’ questions!

One possible way to simplify the IE results is to interpret the numeric
values into, say, stars with a one to five rating. This works well in a
meeting when there is little time.

Another approach is to use the performance to cost ratios and
credibility-adjusted averages. Once management understands how
these values are calculated, this can be a very rapid way of summariz-
ing the key points.

Impact Estimation 285

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH009.3D – 261 – [261–290/30] 29.6.2005
12:43PM

Software Tools Supporting IE

Impact Tables are well suited to spreadsheet software. It is a major
benefit to have the calculations automatically worked out and imme-
diately available for analysis. It is also easy to produce pleasing
graphics.1

0

50

100

150

Impacts by
Design Idea

Tracking System
Show & TellProject SurveyTrainingDocumented

Usa
bilit

y

Porta
bility

Custo
mer S

ervi
ce

Inn
ov

ati
on

Im
ple

men
tat

ion
 C

os
t (

Cos
t)

Per
fo

rm
an

ce
 to

 C
os

t R
at

io

Impacts on
Goals Sum

 of
 P

er
for

man
ce

(S
um

 of
 P

er
for

man
ce

 Im
pr

ov
em

en
ts)

Impact on Budget

Process

Question: Look at Figure and try to identify the most cost-effective design idea and how much of the required
performance attributes it is likely to deliver (see bottom of page for answer).

Figure 9.9
‘Skyscraper’ Representation of IE results (a 3-dimensional bar chart by spreadsheet). The
figure shows a ‘3-dimensional’ example of an IE table. This gives you an idea of the kind of
useful information that an IE table combinedwith spreadsheet software can provide. Design
ideas are along one axis and, performance targets (goals) and cost targets (budgets) are
along another. The third axis graphically compares the levels of various types of impact (for
example, contributions towards performance goals and performance to cost ratios).

Answer: The design idea of providing ‘Training’ is the most cost-effective. However, on its
own it doesn’t deliver sufficient levels of performance to be sure of the project’s success.
Other design ideas should be considered to supplement it, such as ‘Tracking System.’

1 My son, Kai Thomas Gilb has produced a simple working prototype using Microsoft
Excel. We often use it for live demonstrations in the classroom. It is free and available at
our website, www.Gilb.com. Some clients have made IE tools using Microsoft Access,
which has a more pleasing human interface than Excel for entering data. We reckon the
reader can easily make their own IE application from available software.

286 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH009.3D – 261 – [261–290/30] 29.6.2005
12:43PM

Concept Keyed Icon
Impacts ->
Scale Impact -|-|-.->
Percentage Impact %.->
Impact Estimate ->.#
Cell #
Side Effect *.->
Uncertainty "?
Percentage Uncertainty %."?
Scale Uncertainty -|-|-."?
Baseline 0%
Baseline to Target Pair <->
Credibility "?.#
Safety Factor X
Safety Deviation X."
Sum of Performance S.Oþ
Sum of Costs S.-O
Sum for Requirement S.[@]
Performance to Cost Ratio þ%.-%

Figure 9.11
Keyed Icons for Impact Estimation.

0

1

2

3

4

5

6

7

8

9

10

AA BB CC DD

(Sum of Performance – Sum of Worst Case Percentage
Uncertainty values for the performance attributes)/
(Sum of Scale Costs + Sum of Worst Case Scale
Uncertainty values for the cost attributes) = Worst Case
Performance to Cost Ratio

Sum of (Percentage Impact * Credibility) for all performance
attributes/Sum of Scale Costs = Credibility-Adjusted
Performance to Cost Ratio

Sum of ((Percentage Impact – Worst Case Percentage
Uncertainty) * Credibility) for all performance attributes/
Sum of (Scale Costs + Worst Case Scale Uncertainty values)
for the cost attribute = Worst Case, Credibility-Adjusted
Performance to Cost Ratio

Sum of Performance/Sum of Scale Costs = Performance
to Cost Ratio

Figure 9.10
Impact Estimation Analysis of worst cases using Uncertainty and Credibility.

Impact Estimation 287

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH009.3D – 261 – [261–290/30] 29.6.2005
12:43PM

PRIORITIZE
using performance to

cost ratio

ARGUE
for or against
alternatives

COMPARE
alternatives

DESTROY
false beliefs
with facts

FIND WEAKNESS
in useful quality

or excessive costs

SEQUENCE
by risk or value

SEE RISK
by documenting

uncertainty

EVALUATE
all critical
attributes

PRESENT
facts & basis

CUT FAT
by understanding

performance
to cost ratio

Design Ideas->

Requirements:
Goals and Budgets

Idea1
Impact

Estimates

Idea 2
Impact

Estimates

Sum for
Requirement/

(Sum of
Percentage

Impacts)

Sum of
Percentage
Uncertainty

Values
Safety

Deviation

1650 hr ± 0
840 hr
± 240Reliability

300 <-> 3000 hours MTBF
61% ± 0 31% ± 9%

92% ±9% –108%

1 min. ± 4 6 min. ± 9Usability
20 <-> 10 minutes

10% ± 40% 60% ± 90%

70% ±130% –130%

Sum of Performance 71% 91%

500 K ± 200 K 100 K ± 200 KCapital
0 <-> 1 million US$

50% ± 20 10% ± 20
60% ±40% –10%

0 K$/Y ± 180 K 1 M$/Y ± 720 KMaintenance
1.1 M <-> 100 K/year US$

0% ± 18%

100% ±90% –50%

Sum of Cost 50% 110%

Performance to Cost Ratio 1.42
(71/50)

0.83
(91/110)

100% ± 72%

Figure 9.12
Multiple Purposes for IE. Impact Estimation serves many purposes. Here are some headlines
and some symbolic pointers to the parts of the IE table which influence these purposes. A
list of the main purposes can be found in Figure 9.2.

288 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH009.3D – 261 – [261–290/30] 29.6.2005
12:43PM

9.10 Summary

IE is a practical method that can be used throughout the entire
lifecycle of a project to help identify and evaluate design ideas against
system requirements. Specifically, IE promotes better, more informed
design decisions as:

. it forces people to numerically evaluate the impact of design ideas
and to provide evidence to support their estimates

. it helps communication about the key elements of the system
design; the objectives, the budgets and the design ideas

. it provides a means of understanding and dealing with priority and
risk.

In fact, the main problem currently facing people using IE tables is the
lack of quantitative data. To make a start, we can use our practical
experience data. However, there is a general need to gather more
objective data about our technologies. Historically, the emphasis has
been solely on cost data.

Impact Estimation 289

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH009.3D – 261 – [261–290/30] 29.6.2005
12:43PM

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH010.3D – 291 – [291–320/30] 29.6.2005
12:44PM

Chapter

10

EVOLUTIONARY PROJECT
MANAGEMENT

How to Manage Project
Benefits and Costs

GLOSSARY CONCEPTS

Evolutionary Project Management
Gap
Step (or Evo Step)
Result Cycle
Backroom
Frontroom
Before
After
Dependency

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH010.3D – 291 – [291–320/30] 29.6.2005
12:44PM

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH010.3D – 291 – [291–320/30] 29.6.2005
12:44PM

10.1 Introduction to Evolutionary Project
Management

In 1994, the US Department of Defense issued a temporary military
standard, MIL-STD-498, which explicitly supported the use of evolu-
tionary project management (Evo). It also supported the related concept
that projects do not initially have the ‘final and correct user requirements’
specified. This standard has now been evolved into civil standards (such
as IEEE standards) and is continuing to influence new standards. Such
recognition for Evo is deserved as it has probably the best track record of
any known project management method (Larman and Basili 2003).

Practical Experience with Evolutionary Project
Management

Surprisingly, many project cultures have little formal knowledge of
Evo, even though it has been in use since the 1960s. The first
documented large-scale industrial use of Evo was from 1970 to
1980 and on, within IBM Federal Systems Division (IBM FSD,
later owned by Loral and Lockheed Martin). Working within the
military and space sector, they had complex ‘high-tech’ projects
requiring state-of-the-art performance with fixed financial budgets
and fixed deadlines. These extreme requirements drove them into
developing methods known as ‘Cleanroom’, which included using
Evo. Harlan Mills reported on these early IBM FSD experiences as
follows:

Ten years ago general management expected the worst from
software projects – cost overruns, late deliveries, unreliable and
incomplete software. Today, management has learned to expect
on-time, within budget deliveries of high-quality software.
LAMPS . . . a 4 year . . . 200 person-years (project was delivered) in
45 incremental deliveries. Every one of those deliveries was on time
and under budget. [The] NASA space program . . . 7,000 person-
years software development . . . few late or overrun [budgets] . . . in . . .
[a] . . . decade, and none at all in the past four years.

Harlan Mills (Mills 1980: reprinted (IBMSJ 1999))

Harlan Mills told me that it was precisely the ‘fixed deadline’ and the
cost situation of ‘lowest bidder wins’, which led to the development of
Evo. He also told me that their model for Evo was the way in which
intelligent military and civil rockets move towards their targets using
feedback and control mechanisms.

Evolutionary Project Management 293

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH010.3D – 291 – [291–320/30] 29.6.2005
12:44PM

More recently, Hewlett-Packard has also publicly documented the
benefits of Evo (Cotton 1996; May and Zimmer 1996; Bronson
1999; Upadhyayula 2001; MacCormack 2001). Evo has been in use
within the organization since at least 1988.1

The evolutionary development methodology has become a signifi-
cant asset for Hewlett-Packard software developers. Its most salient,
consistent benefits have been the ability to get early, accurate,
well-formed feedback from users and the ability to respond to that
feedback.

Elaine May and Barbara Zimmer, Hewlett-Packard
(May and Zimmer 1996, Page 44).

Microsoft has also been documented as using Evo extensively (MacCor-
mack 2001; Cusumano and Selby 1995). The Open Source Methods
(like Linux) (Maier and Rechtin 2002) and Agile Software Development
methods (Cockburn 2002; Abrahamsson et al. 2002) have also clearly
demonstrated the power of Evo in delivering good software rapidly.

The use of Evo is also proven within engineering processes. For
example in 1988, this author consulted with over 25 projects (about
120 aircraft design engineers) at Douglas Aircraft. Of course, new
aircraft did not fly the next week (most of the projects were modifica-
tions and upgrades, or integrating new components). But, real results
capable of giving useful feedback were delivered to real stakeholders in
weekly increments. Management approved each Evo step in advance.
They found the method was practical, low risk and they could not
resist seeing results fast.

Underlying Principles of Evolutionary Project
Management

The underlying principle of Evo is the Plan-Do-Study-Act cycle
(PDSA cycle). In other words, the ‘process control cycle’ as taught
by Walter Shewhart of AT&T from the 1920s onwards and, by his
pupils, W. Edwards Deming from the late 1940s to the 1990s
(Deming 1986) and Joseph Juran (1974). It is one of nature’s great
laws; learn, adapt and survive.

Evo expands on the Statistical Process Control ‘Plan-Do-Study-Act’
(PDSA) cycle concepts since it demands:

1 In 1988, the author taught Evo to an HP project team, which included Todd Cotton,
who later went on the spread the method widely at HP (Cotton 1996), (May and
Zimmer 1996).

294 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH010.3D – 291 – [291–320/30] 29.6.2005
12:44PM

. Early delivery of project results to stakeholders (for example, ‘next
week’!)

. Frequent releases to stakeholders (for example, ‘every Friday’)

. Small increments (‘steps’) (for example, no more than 2% of total
project)

. Useful-to-stakeholder steps (benefit delivered, value experienced)

. Selection and sequencing of steps according to degree of stakeholder
benefit; usually but not always, high-profit steps first (using
dynamic priority determination).

Who could be against such an idea? It is a powerful competitive
weapon. In practice, the main problem for project management is
usually ‘how?’ How is a major project divided up into a succession of
say, monthly improvements to be delivered into the hands of the
users? Some people don’t see any difficulty. Many, however, are
unable to envision such small step decomposition for their projects,
and usually claim it is impossible. In my experience, there are always
ways of achieving such decomposition. It is a question of training,
being determined to find the answer and having the right technical
knowledge and/or sufficient insights into the stakeholder environment.

As our entire political, technological and economic world now has
a greater rate of change and is much more unpredictable and
complex than ever before, adaptive methods, such as Evo, must

Evolutionary Acquisition, Spiral Development, &
P3IIncrement or

Block 1

Increment or
Block 2

Increment or
Block 3

Increment or
Block 4

FOC

Spirals

Spirals

Spirals

Spiral
P3I

Evolutionary
Acquisition

Figure 10.1
Illustration from letter to senior staff in the US Department of Defense from Under Secretary
of Defense E. C. Aldridge, Jr., April 12, 2002. ‘‘Since the publication of DoD Directive 5000.1
and DoD Instruction 5000.2, in which the Department established a preference for the use
of evolutionary acquisition strategies . . . ’’ See http://www.acq.osd.mil/dpap/Docs/ar/
1_multipart_xF8FF_2_EA%20SD%20Definitions%20final.pdf. This illustration is included
mainly to show that evolutionary methods have been accepted at top levels within US
Government.

Evolutionary Project Management 295

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH010.3D – 291 – [291–320/30] 29.6.2005
12:44PM

become the norm to manage projects, rather than the exception.
(It is only in the case of predictable, low-risk, low-turbulence,
low-competition situations that there is little need for an evolu-
tionary method.)

A Basic Evolutionary Planning Policy

1. Financial Control: No project cycle can exceed 2% of total initial
financial budget before delivering some measurable, required
results to stakeholders.

2. Deadline Control: No project cycle can exceed 2% of total pro-
ject time (For example, one week for a one year project) before
delivering some measurable, required results to stakeholders.

3. Value Control: The next step should always be the one that
delivers best stakeholder value for its costs.

Policy Example: Formulating an Evo policy is the first stage of deciding
how to do Evo. I frequently recommend this Evo policy to senior managers
who must implement and support an Evo project management policy. You
can adjust the level of detail to suit your environment.

10.2 Practical Example: Evolutionary Project
Management

I have used this following example on numerous occasions. It stands
such repetition as it gives such good insight into one common per-
ceived barrier to Evo: ‘‘Delivery cannot be done until the new thing
(such as a building, organization or IT system) is ready in some years
time.’’

The Naval Radar System

Once, when holding a public course on Evo in London, a participant
came to me in the first break and said he did not think he could use
this early-incremental method. Why? ‘‘Because my system is con-
tracted to be mounted on a new ship, not destined to be launched
for three years’’.

I did not know anything about his system, at that point. But I
expressed my confidence that there is always a solution to making a
project evolutionary. So, I ‘bet’ that we could find an Evo solution
during our lunch break. He sportingly accepted.

296 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH010.3D – 291 – [291–320/30] 29.6.2005
12:44PM

At lunch, he started by explaining that his research team made a radar
device that had two antennas instead of the usual one (the dual signal
sources were analyzed by a computer, which presented their data). It
was for monitoring the ship- and air-traffic surrounding the ship it
was on. This, I understood, was similar to having two eyes, instead of
being a cyclops.

I then made a stab at identifying the ‘results’ he was delivering and
who his stakeholders were (two vital insights for making Evo plans).
‘‘May I assume that the main result you provide is ‘increased accuracy
of perception’, not just a black box, and that your major stakeholder is
‘The Royal Navy’, not primarily the ship (also one of the many
stakeholders) itself?’’ ‘‘Correct’’, he replied. (I’m simplifying a bit,
but the point to note is that identifying the primary real requirements
and stakeholders, gives a ‘wider playing field’.)

‘‘Does your ‘black box’ work, more or less, now, in your labs (another
stakeholder)?’’ I ventured. (Because, if it did, that opened for early use
of some kind.) ‘‘Yes’’, he replied. ‘‘Then what is to prevent you from
putting it aboard one of Her Majesty’s current ships (yet other stake-
holders!)? Initially running in parallel with conventional radar. Then
ironing out any problems in practice. Enhancing it. Possibly giving
that ship itself immediate increased capability, in a potential sudden
real war? Then, when your new ship is launched, your system will be
far more mature and safe to use’’, I tried innocently. (Actually, he got
these points before I said anything!)

‘‘Nothing!’’ he replied. And at that point I had won my bet, 20
minutes into the lunch.

‘‘You know, Tom’’, he said after five minutes of silent contemplation,
‘‘the thing that really amazes me, is that not one person at our research
labs has ever dared to express such a thought!’’

Notice the ‘method’ emerging from this example:

1. Identify the primary stakeholders. Do not get distracted by sec-
ondary stakeholders. The primary stakeholder was not the ‘new
ship’. It was the ‘Royal Navy’ or even ‘The Western Alliance.’

2. Look for the primary and real performance objective. Do not get
distracted by the perceived project ‘product’ or secondary and
supporting requirements or designs (like the radar system with
two sources). Keep asking ‘why?’ until you find the primary
objectives.

The real objective was not ‘to put the electronics box on the new
ship’. It was ‘an increased accuracy of perception.’ In other words,
‘an improvement in a performance aspect (‘‘perception’’: a quality)
of the radar function.’

Evolutionary Project Management 297

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH010.3D – 291 – [291–320/30] 29.6.2005
12:44PM

The moment you have converted the result into such a ‘scalar
requirement,’ then evolving towards your targets along that scale
seems relatively easy to plan. This is one reason why we emphasize
quantifying performance requirements in Planguage for use in
Evo.

3. Focus your activity on delivering the required results to the
stakeholders. Plan to deliver the results in increments or
‘steps’ to stakeholders. One reason is in order to get feedback
from stakeholders on the way. There are several practical
tactics you can use for identifying potential Evo steps, see
Figure 10.6.

4. Don’t take the formal contract too literally! Early useful results are
always welcome, even when not demanded in a contract or require-
ments. (Check! Does the contract or requirements specification
actually say: ‘‘We refuse to accept early delivery of any useful,
partial results’’?)

5. Don’t assume that your project staff is thinking along these
lines. Evo is not yet ‘normal thinking’ even amongst well-trained
engineers.

6. Avoid Narrow Distractions. Think Big. Think System-wide.

10.3 Language Core: Evolutionary Step
Specification

Step Content

An evolutionary step (‘step’ or ‘Evo step’) is a package of one or more
design ideas.

A step has to be capable of being delivered as an organic whole. A step
should stand ‘on its own’ as a complete deliverable.

A step also will have a defined size constraint. From the point of view
of risk control, any step should only consume between 2% and 5% of
the total project budget for time and financial cost. This has implica-
tions for the decomposition of design ideas, function changes and the
scope covered by a step.

Delivery of a step is always intended in some defined way to move a
real system (very occasionally, a trial system) in the direction of its
specified requirements. A step might modify a system’s function attrib-
utes, its performance attributes and/or its resource attributes. (Of
course, when implemented, a step might not produce the expected
results. It could, for example, have unintended, unexpected and
undesired side effects.)

298 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH010.3D – 291 – [291–320/30] 29.6.2005
12:44PM

At some stage during the design process (maybe when initially
specified, maybe later), a step is identified for delivery at some
specific time, place and on some defined event conditions for a
system. The conditions are specified using qualifiers (for example,
[Europe, Next Year, If a Competitive Product is on the Market].
‘Place’ qualifiers can be any useful combination of system users,
system locations, system components and system functions (for
example, [{Marketing Staff, Accountants}, {Europe, North America},
{Software Products, Training Products}, {Accounting, Marketing, Ana-
lysing Monthly Reports}]).

Step Name

For communication purposes, a step may be named after its
dominant content. A unique step-reference name is useful for
specification of reuse of a step. Step names can have qualifiers (for
example, Step A [Europe]).

EXAMPLE Web Plan [Europe]:
Type: Evo Plan.
Consists Of: Step {Handbook, On-line Help, French Language Variant, Remove
Spelling Mistakes, Provide For Customer Feedback}.

Step Dependency

Delivery of some steps might be dependent on other steps having
already been delivered. Any step dependency must be explicitly stated
in a step specification. In some cases, step dependency will be total
and it will be impossible to deliver unless the dependency is met. In
others, the step will be capable of delivery, but its impact on the
requirements, such as meeting goals, will be significantly less.

EXAMPLE Web Plan [Europe]:
Type: Evo Plan.
Consists Of: Step {Handbook, On-line Help, French Language Variant, Remove
Spelling Mistakes, Provide for Customer Feedback}.
Dependency: Remove Spelling Mistakes Before Provide for Customer Feedback.

Step Sequencing

An Evo plan is a set of sequenced and/or a set of yet-to-be-sequenced
steps. The current planned sequence of delivery of any of the steps
should be reconsidered after each step has actually been delivered and
the feedback has been analyzed. Many factors, internal and external,

Evolutionary Project Management 299

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH010.3D – 291 – [291–320/30] 29.6.2005
12:44PM

can cause a re-sequencing of steps and/or the insertion of previously
unplanned additional step(s) and/or the deletion of some step(s).

It is the identification of the next step for delivery that should be our
focus for detailed practical planning. After all, at the extreme, other
planned steps may never be implemented in practice. So, the mini-
mum information, initially needed for a step, is that needed to
support the decisions for step sequencing.

When determining step sequencing, there are several factors including:

1. Step dependencies with other potential steps.
2. The value that stakeholders will obtain if a step is delivered. This is

the key factor. Ask your stakeholders what unfulfilled requirements
would be of most value to them and ask them for evidence
supporting their choices. Different stakeholders might well choose
different requirements. It could be that a requirement ‘wins’ due to
its aggregated value to several stakeholders.

3. The value to cost ratios and the performance to cost ratios for steps
(generally, the step with the highest value to cost ratio is imple-
mented earliest. The performance to cost ratios are also another
consideration).

4. The gaps between benchmark levels, or currently delivered levels, and
the goals (‘the biggest’ gap or ‘the toughest’ gap is highest priority).
The requirement with the biggest gap is the requirement that is least
satisfied (that is, the lowest percentage of the way from the baseline
towards the target has been achieved). A requirement, which is
considered very tough, might also be a priority to start work on.

5. Stakeholder opinion (which can overrule any other logic). ‘‘I want
this now!’’

Specification using Planguage

There are many ways to express Evo plans. You can use any style that
suits you. Here are some examples showing how Evo plans and steps
can be specified using Planguage.

EXAMPLE Early Adopters:
Type: Step [Base¼Current Product].
Consists Of: {DIF: Function [Country¼USA]: Get Geographical Data, DIA, DIB}.

Note :

i) DIA, DIB and Get Geographical Data will have been previously
specified and defined elsewhere. The design idea, DIF is defined here.

ii) ‘Early Adopters’ is a step, which consists of a package of three design
ideas, DIF, DIA and DIB.

300 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH010.3D – 291 – [291–320/30] 29.6.2005
12:44PM

iii) Future steps are incremental additions to an existing system. We can
define the system prior to delivery of a step by using the parameter
‘Base’.

iv) In the ‘Early Adopters’ step, we explicitly declare the specification to
be ‘Type’: (<- that’s the ‘explicit’ part) ‘Step.’ ‘Function’ is used to tell
the reader the type of Get Geographical Data.

v) The function Get Geographical Data is limited to one specific
Country, USA.

Here is an example of stating an Evo plan.

EXAMPLE Product Plan:
Type: Evo Plan.
Includes: Step {SP [Before Rest], Rest: {SM, Step¼ SV, SX [After SM], SZ}}.

This example shows that an entire Evo plan can be summarized, at a
high level, in a single Planguage statement. An Evo plan consists of a
series of steps. In this example, there is a set of steps {SP, SM, SV, SX,
SZ} which make up the Evo plan, named ‘Product Plan.’ ‘Rest’ is
defined as being part of an Evo plan and consists of four defined steps.
‘SP’ is defined as the step to do ‘before’ the steps in Rest. The other
steps have not had their sequence determined. There are no restric-
tions on doing them in parallel, or in arbitrarily convenient sequences,
except that SX must be done ‘after’ SM.

Qualifiers specify ‘where’ a step is to be implemented. Here are
two examples showing system location and system function being
stated:

EXAMPLE Step 22:
Type: Step.
Consists Of: SR [State¼ {CA, NV, WA}].
‘Step22’ implements ‘SR’ in three US states: CA, NV and WA.

EXAMPLE Step 1:
Type: Step.
Consists Of: SP [Country¼North America¼ {USA, CAN, MEX}, FX [State¼
{WA, GA, FL}]].

‘Step 1’ implements ‘SP’ in three countries. The function, FX within
SP, is however restricted to just three US states. Note, the geographi-
cal concept or market area, ‘North America’ is defined here locally, for
intelligibility or future reuse.

Evolutionary Project Management 301

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH010.3D – 291 – [291–320/30] 29.6.2005
12:44PM

10.4 Rules: Evolutionary Project Management

Tag: Rules.EVO.

Version: October 7, 2004.

Owner: TG.

Status: Draft.

Gist: Rules for Evo Plan Specification.

Base: The rules for generic specification, Rules.GS apply as well as all
other Planguage rules needed to express requirements and design.

R1: Tags: All steps of an Evo plan will have a unique tag to enable cross-
referencing from other specifications (such as test planning or costing).

R2: Detail: All detailed design idea specifications shall be kept sepa-
rate from the Evo plan. For brevity, use Planguage step descriptions
only. Any Evo plan elements yet to be defined in detail must be
specified by a unique tag in fuzzy brackets (<Tag Name 1>). This
will indicate that the detail is not specified yet. Rationale: We need to
avoid the clutter of design idea definitions in the Evo plan itself. Tags are
sufficient.

R3: Cost: Any planned step, that has an estimated incremental
impact, for any resource attribute, which exceeds 5% of the total
budget planned level, will be re-specified into smaller steps, to reduce
risk. An average of 2%-of-budget steps is desirable (as risk of economic
loss is then at 2% maximum), but individual projects may specify their
own budget constraints. All planned steps still exceeding these single
step budget constraints must be agreed by authorized signature.

R4: Time: Any step, which would take more than 5% of the total
project calendar time (from project start up to the main long-term
deadline), must be divided into smaller steps. An average of 2%-of-
time steps is desirable, but individual projects may specify their own
time constraints. All steps exceeding the 5% time constraint must be
agreed by authorized signature. Rationale: Control time to deadline.

R5: Priority: The ‘next step’, at any point in the project, should
ideally be selected using an Impact Estimation table to evaluate step
options. Steps that you estimate to deliver the greatest stakeholder
benefits, performance improvements (Sum of Percentage Impacts) to
stakeholders, or that have the best performance to cost ratio, shall
generally be done earliest, wherever logically possible, and when ‘other
considerations’ (such as a customer contract or request) do not have
higher priority. Any specific priority factors, which override going for
the greatest stakeholder benefits first, shall be clearly documented.

302 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH010.3D – 291 – [291–320/30] 29.6.2005
12:44PM

There must be some specified clear rationale, policy or rule behind
prioritizing steps differently from this rule. This could be some
estimate of value of a step, which is outside the scope of the specific
Impact Estimation table, which might have priority.

EXAMPLE Step 44:
Type: Step.
Consists Of: ABC [UK]: <- Contract Requirement 6.4.
Rationale: The contract demands we deliver this step at this point.

Optionally, there can be a project-defined constraint of a step having
to achieve a minimum estimated value (financial growth or saving),
overall performance improvement or performance to cost ratio before
being considered for implementation at all.

R6: Next: Only the current step, or the approved next step, has
‘commitment to implementation’ (and even then, it could be termi-
nated mid-implementation, if seen not to be delivering to plan). The
sequencing specification of subsequent steps is not necessary and is
certainly not fixed. In practice, there is likely to be a tentative step
sequencing mapped out, which captures any dependencies.

R7: Impact: The next step must be numerically estimated in detail for
its impacts on all the critical performance and resource requirements.
Other later steps may be more roughly estimated, either individually
or in relevant groups. They will be estimated in greater detail as their
‘turn’ approaches. Rationale: To force us to estimate, measure and consider
deviation in small immediate steps.

R8: Learn: The actual results of the steps already implemented (that is,
the cumulative impacts on all requirement levels to date) and the esti-
mated results for the next step must be specified in an IE table (see Table
10.1 example). Specific comment about negative deviations already
experienced, and what you have specifically done in your plan to learn
from them, should be included in some form of footnote or comment.
(Note: We assume the use of an IE table, but other formats are possible.)

R9: Completeness: All the specified design ideas for a system, imple-
mented or not, must be represented somewhere on an Evo plan.
(Remember, you can use tags and you can declare a large set of designs
with a single tag. For example, A: Defined As: {B, C. D, E, F}.)

Rationale: This is because failure to include all the specified design ideas
somewhere on the Evo plan causes confusion. It leaves us to wonder:

. Was it forgotten inadvertently?

. Why is it specified, if it is planned never to be implemented? (If you are
just keeping the idea in reserve, be specific.)

Evolutionary Project Management 303

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH010.3D – 291 – [291–320/30] 29.6.2005
12:44PM

10.5 Process Description: Evolutionary Project
Management

These Evo processes are generalized. Modification to suit individual
circumstances might well be required.

See also Figures 1.3 and 1.7 in Chapter 1.

Process: Strategic Management Cycle (‘The Head’)

Tag: Process.SM.

Version: October 7, 2004.

Owner: TG.

Status: Draft.

Note: Process.DC (Delivery Cycle) is a separate process defined below.

Entry Conditions: Entry.SM

E1: All necessary input information for Evo is available to the project
management and design team.

E2: All input documents have successfully exited from their own
quality control process. The specification quality control (SQC) entry
condition applies to the project requirements and the design idea
specifications. Note: This usually implies between 0.2 and 1 remaining
major defect(s)/page (A page is 300 words of non-commentary text.)

E3: The design idea specifications have been evaluated using IE and,
the IE table has exited from SQC.

E4: The level of uncertainty acceptable to the project has been formally
determined (deviation (" %) from plan). Default level " 10%.

E5: The project management and design team are adequately trained or,
assisted by a qualified person to analyze and specify evolutionary plans.

E6: There is relevant approval, including funding, for the project to
proceed.

Procedure: Procedure.SM

P1: Plan:

1. Modify if necessary top-level project requirements and design
ideas.

304 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH010.3D – 291 – [291–320/30] 29.6.2005
12:44PM

2. Update the long-term Evo plan.
3. Initiate any backroom development cycles and/or production

cycles required for future steps.
4. Decide on the next step for delivery (to the frontroom).
5. For next step: Set step targets, select step design ideas, decide

step [qualifiers].
6. Produce maximum one page overview plan for the step

delivery (see template in Figure 10.8 and, also the example in
Figure 10.5).

The step delivery cycle (DC) can start once the next step (for delivery) has
been decided and when the relevant development and production cycles
are complete.

P2: Do:

Initiate the Delivery Cycle (that is, the step delivery to the stakeholder.
Others may carry out the detailed work).

P3: Study:

1. On completion of the Delivery Cycle, identify the numeric differ-
ences between the system’s actual attribute levels and the target
requirements. Where are the large ‘gaps’?

2. Note numeric differences between estimated step results and actual
results.

3. Monitor the progress of any current ‘backroom’ development
cycles and/or production cycles. Ensure they have sufficient
resources to be completed on-time.

4. Note any stakeholder needs, technological, political or economic
changes, which should be reflected in the Evo step sequencing, or
even the requirement or design specification.

P4: Act:

Adopt the change, or abandon it (revert to previous state before
step implementation). Or, decide to run through the cycle
again, but possibly under changed conditions (paraphrased from
W.E. Deming 1986).

Go to P1 (that is, continue cycling), unless Exit Conditions are met.

Exit Conditions: Exit.SM

X1: If resources used up, stop project. Keep results achieved so
far!

X2: If all existing Goal levels are reached, stop using resources.

Evolutionary Project Management 305

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH010.3D – 291 – [291–320/30] 29.6.2005
12:44PM

Process: Delivery Cycle (Part of ‘The Body’)

Tag: Process.DC.

Version: October 7, 2004.

Owner: TG.

Status: Draft.

Gist: This process is for delivery of a single step, not the larger project
totality.

Entry Conditions: Entry.DC [Step n]

E1: All logically prerequisite steps to this one, which were specified,
have been completed.

E2: The numeric feedback results from any previously completed
steps must be available to the design team and must have
been studied. (You may want to re-do the previous step before
proceeding.)

Strategic
Management

Cycle

Development
Cycle

Delivery
Cycle

Result Cycle

Backroom

Frontroom

Production
Cycle

Backroom

Feedback ‘Go’

ExitStart

‘The Head’

‘The Body’

Figure 10.2
The result cycle for an Evo Step.

306 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH010.3D – 291 – [291–320/30] 29.6.2005
12:44PM

Procedure: Procedure.DC [Step n]

P1: Plan:

1. Specify the delivery of the step in detail. See Figure 10.8 in Section
10.9 for a template.

2. Agree the plan with the relevant, affected stakeholders (For exam-
ple, management and customers). The list of topics to consider
includes: changes to working practices, training, installing, regres-
sion testing, field trials, hand-over and criteria for success: all
system-wide considerations.

P2: Do:

Deliver the step. Install it with real stakeholders, so they get some
of the planned measurable benefits.

P3: Study:

1. Determine the results of delivering the step. Obtain any relevant
measurements: test, measure and sample, to establish the new
performance levels and the new operational cost levels. Compare
results to the short-term and long-term targets.

2. Analyze the data and produce a feedback report for management.

For example, use an Impact Estimation table as a tool to do this study
task.

P4: Act:

1. Decide if this step succeeded, must be redone in whole or part, or
totally rejected.

2. Take any required minor corrective actions (for example, bug-
fixing) to ‘stabilize’ the system.

Act

Plan

Do

Study

Analyze the
Feedback Results

from the Evo
Step & the Current

Environment

Decide ‘What’
to do next

Plan the Evo Step

Perform the Evo
Step

Simplified Evo Process: Implement Evo Steps

Figure 10.3
A simplified Evo process: implementing Evo steps.

Evolutionary Project Management 307

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH010.3D – 291 – [291–320/30] 29.6.2005
12:44PM

Exit Conditions: Exit.DC [Step n]

X1: Step completed, or dropped. Exit a step only when all step
performance levels and function requirements are reached (or wavered
formally). Give up if reaching planned requirements is impractical, or
if you run out of resources.

Note: Process Descriptions for the Development Cycle and the Production
Cycle are not given in this text.

A Simplified Evo Process

Background: A simplified version of the Evo process to use on small
projects. It also serves to help understand the larger, full-scale Evo
process.
Tag: Simplified Evo.
Version: October 7, 2004.
Owner: TG.
Status: Draft.

Process Description

1. Gather from all the key stakeholders the top few (5 to 20) most
critical goals that the project needs to deliver. Give each goal a
reference name (a tag).

2. For eachgoal, definea scale ofmeasureanda ‘final’ goal level. For
example: Reliable: Scale: Mean Time Before Failure, Goal:
>1 month.

3. Define approximately 4 budgets for your most limited resources
(for example, time, people, money and equipment).

4. Write up these plans for the goals and budgets (try to ensure this
is kept to only one page).

5. Negotiate with the key stakeholders to formally agree the goals
and budgets.

6. Plan to deliver some benefit (that is, progress towards the goals)
in weekly (or shorter) increments (Evo steps).

7. Implement the project in Evo steps. Report to project sponsors
after each Evo step (weekly, or shorter) with your best available
estimates or measures, for each performance goal and each
resource budget. On a single page, summarize the progress to
date towards achieving the goals and the costs incurred.

Policy
. The project manager and the project will be judged exclusively on
the relationship of progress towards achieving the goals versus the
amounts of the budgets used. The project team will do anything
legal and ethical to deliver the goal levels within the budgets.

. The team will be paid and rewarded for benefits delivered in
relation to cost.

. The team will find their own work process and their own design.

. As experience dictates, the team will be free to suggest to the
project sponsors (stakeholders) adjustments to ‘more realistic
levels’ of the goals and budgets.

308 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH010.3D – 291 – [291–320/30] 29.6.2005
12:44PM

TIME

PLACE: LOCATION:
Geographic Location /
User Type /
User Role /

Market & others

EVO
PLAN

Design Idea A
[USA, Customer
Services]

Step 4?

Step 3?

Step 2?
Design Idea X
[UK + France,
Sales]

Design Idea X
[USA [Site B],
Sales Managers]

Design Idea Y
[USA, All Sales
Staff]

2%

SYSTEM

PLACE: PART:
System Function /
System Component

RESOURCES
(COSTS)

PERFORMANCE

2%

2%

2%

Step1

Figure 10.4
An Evo plan and the system: the diagram shows the steps being sequenced for delivery.
Each step delivers a set of performance attributes (a subset of the long-term planned
results), and consumes a set of resources (a subset of the long-term budgets), in a specific
place {location, system component} and at a specific time (for delivering the benefits).
The purpose of this diagram is to show that each Evo Step will become a sub-component
of the evolving system’s long-term vision and plan.

Evolutionary Project Management 309

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH010.3D – 291 – [291–320/30] 29.6.2005
12:44PM

10.6 Principles: Evolutionary Project Management

1. The Principle of ‘Capablanca’s next move’
There is only one move that really counts, the next one.

2. The Principle of ‘Do the juicy bits first’
Do whatever gives the biggest gains. Don’t let the other stuff
distract you!

3. The Principle of ‘Better the devil you know’
Successful visionaries start from where they are, what they have and
what their customers have.

4. The Principle of ‘You eat an elephant one bite at a time’
System stakeholders need to digest new systems in small incre-
ments.

5. The Principle of ‘Cause and Effect’
If you change in small stages, the causes of effects are clearer and
easier to correct.

6. The Principle of ‘The early bird catches the worm’
Your customerswill be happier with an early long-term streamof their
priority improvements, than years of promises, culminating in late
disaster.

7. The Principle of ‘Strike early, while the iron is still hot’
Install small steps quickly with people who are most interested and
motivated.

8. The Principle of ‘A bird in the hand is worth two in the bush’
Your next step should give the best result you can get now.

9. The Principle of ‘No plan survives first contact with the enemy’2

A little practical experience beats a lot of committee meetings.

10. The Principle of ‘Adaptive Architecture’
Since you cannot be sure where or when you are going, your first
priority is to equip yourself to go almost anywhere, anytime.

2 This saying is attributed to Prussian general staff and the elder Von Moltke: ‘‘They did
not expect a plan of operations to survive beyond the first contact with the enemy. They set
only the broadest of objectives and emphasized seizing unforeseen opportunities as they
arose . . . Strategywas not a lengthy action plan. It was the evolution of a central idea through
continually changing circumstances’’ (From Von Clausewitz in his ‘On War’, quoted by
General Electric’s CEO, Jack Welch in a speech December 8, 1981, in Slater, 2000: 194).

310 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH010.3D – 291 – [291–320/30] 29.6.2005
12:44PM

The Principles of Tao Teh Ching (500 BC)

That which remains quiet, is easy to handle.
That which is not yet developed is easy to manage.
That which is weak is easy to control.
That which is still small is easy to direct.
Deal with little troubles before they become big.
Attend to little problems before they get out of hand.
For the largest tree was once a sprout, the tallest tower started with
the first brick, and the longest journey started with the first step.3

10.7 Additional Ideas: Evolutionary Project
Management

Backroom/Frontroom

Some step components will inevitably have a longer development and/
or production elapsed time. This can be due to a variety of reasons, for
example, lead time for purchasing. In such cases, ‘backroom’ activities
will have to be underway well before the decision about which step to
deliver next is made. There will have to be parallel step component
development and production cycles.

The stakeholder in the frontroom, who receives the delivery step, is
unaware of the backroom work. A useful analogy is a restaurant
kitchen (backroom) and the customers in the restaurant (frontroom):
if all goes well, the food is delivered at frequent intervals and all the
preparation, cooking time and co-ordination of dishes for a specific
table are invisible to the customers.

In fact, a skillful project manager will probably aim to have more than
one potential delivery ‘stockpiled,’ so that there is choice over the next
delivery, and leeway if any major problem effects step development.

Using IE Tables for Evo Plans

The steps of an Evo plan can be analyzed using an IE table. See Table
10.1. In this case steps (which consist of design ideas) are specified.
Steps are estimated and (after deployment) measured for impact on
requirements (performance and resource attributes), in relation to
targets.

3 From Lao Tzu, in Bahn (1980).

Evolutionary Project Management 311

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH010.3D – 291 – [291–320/30] 29.6.2005
12:44PM

T
ab
le
10

.1
T
hi
s
is
a
co
nc
ep
tu
al
ex
am

pl
e.
T
hr
ee

go
al
s
(p
er
fo
rm

an
ce

ta
rg
et
s)
an
d
tw
o
re
so
ur
ce

ta
rg
et
s
ar
e
ha
vi
ng

th
e
re
al
im

pa
ct
s
on

th
em

tr
ac
ke
d,

as
st
ep
s
ar
e

de
liv
er
ed
.
T
he

sa
m
e
IE

ta
bl
e
is
al
so

be
in
g
us
ed

to
sp
ec
if
y
th
e
im

pa
ct
es
ti
m
at
es
fo
r
th
e
fu
tu
re
pl
an
ne
d
st
ep
s.
So

at
ea
ch

st
ep
,t
he

pr
oj
ec
t
ca
n
le
ar
n
fr
om

th
e
re
al
it
y
of

th
e
st
ep
’s
de
vi
at
io
n
fr
om

it
s
es
ti
m
at
es
.
P
la
ns

an
d
es
ti
m
at
es

ca
n
th
en

be
ad
ju
st
ed

an
d
im

pr
ov
ed

fr
om

an
ea
rl
y
st
ag
e
of

th
e
pr
oj
ec
t.

St
ep

St
ep

1
St
ep

2
to

St
ep

20
St
ep

21
[C
A
,

N
V
,
W
A
]

St
ep

22
[a
ll
ot
he
rs
]

T
ar
ge
t

R
eq
ui
re
m
en
t

P
la
n
%

(o
f
T
ar
ge
t)

A
ct
ua
l
%

D
ev
ia
ti
on

%
P
la
n
%

P
la
n
%

cu
m
ul
at
ed

to
he
re

P
la
n
%

P
la
n
%

cu
m
ul
at
ed

to
he
re

P
la
n
%

P
la
n
%

cu
m
ul
at
ed

to
he
re

P
er
fo
rm

an
ce

1
5

3
#
2

40
43

40
83

#
20

63
P
er
fo
rm

an
ce

2
10

12
þ
2

50
62

30
92

60
15

2
P
er
fo
rm

an
ce

3
20

13
#
7

20
33

20
53

30
83

C
os
t
A

1
3

þ
2

25
28

10
38

20
58

C
os
t
B

4
6

þ
2

38
44

0
44

5
49

312 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH010.3D – 291 – [291–320/30] 29.6.2005
12:44PM

Notes :
1. New user-defined types of ‘Questionnaire’ and ‘Intended Audience’ have

been locally declared.
2. There is a brainstorming and note-taking atmosphere here. Do not

expect to understand the internal language of my client in an isolated
first draft teamwork example !

3. This illustration is mainly given to show an example of a set of parameters
describing the attributes of a step. You should feel free to design your own set
of useful step specification parameters.

Using Templates for Specifying Evo Steps

Figure 10.5 shows an example of a filled-in template for specifying an
Evo step (see also Figure 10.8 in Section 10.9 for an outline template).

An Evo Step Specification

Evo Step: Tutorial [Model 1234, Basic].

Stakeholders: {Marketing, Department XX}.
Implementers: Department XX.
Intended Audience: Marketing.

Gist: To prepare a written tutorial that teaches how to identify required information on internet
web pages.

Step Content: HCTD12:<Hard Copy Text Document>. ‘‘This declares a design idea, HCTD12,
that needs further detailed specification. Someadditional notes about it are also given. See below.’’

Notes [HCTD12]:
. Can write the basic minimal functions, MMM, in 1 week. <-GF.
. Provide step by step instructions, in English.
. Questionnaire for Stakeholders.
. Intended audience: Marketing.
. Focus on <sales aspects>, not how to identify information in detail (not yet, in this step).
. Go to <specific web sites>.
. Process for Testing with Stakeholder (for example, observation, times).
. Pinpoint some characteristics of what we see on the terminal compared with what we see on
a <PC or other terminal>.

. What instructions should be on the terminal to begin?

. No illustrations to be provided, just text.
Questionnaire: Defined As: Questionnaire to walkthrough with stakeholders.

Step Validation: DefinedAs:Process for TestingwithStakeholders. ‘‘Exampleobservation, times.’’

Constraint: Step must be deliverable within one calendar week.

Assumptions [Applies¼Step Cost [Effort], Source¼MMM]: 10 hours per page.

Dependencies: <Feature list of WWW>, <77777 WWW Browser> <-MMM.

Risks: At least 3 hours needed of TTT’s time for input and trial feedback.

Step Value:
{[Stakeholder¼TTT, Saleability]: <some possibility of value>,
[Stakeholder¼Developers]: <value of feedback on a tutorial>}.

Step Cost [Effort]: < 10 hours <-MMM.

Figure 10.5
An example of using the specification template for an Evo step.

Evolutionary Project Management 313

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH010.3D – 291 – [291–320/30] 29.6.2005
12:44PM

10.8 Further Example/Case Study: The German
Telecommunications Company

Here is an example of another perceived barrier preventing use
of the evolutionary method: ‘‘It is too late, we have already
invested so much in the old way, that we just have to see it
through.’’

How to decompose systems into small evolutionary steps: (a list of practical tips)

1. Believe there is a way to do it, you just have not found it yet!4

2. Identify obstacles, but don’t use them as excuses: use your imagination to get rid of them!
3. Focus on some usefulness for the stakeholders: users, salesperson, installer, testers or

customer. However small the positive contribution, something is better than nothing.
4. Do not focus on the design ideas themselves, they are distracting, especially for small

initial cycles. Sometimes you have to ignore them entirely in the short term!
5. Think one stakeholder. Think ‘tomorrow’ or ‘next week.’ Think of one interesting improvement.
6. Focus on the results. (You should have them defined in your targets. Focus on moving

towards the goal and budget levels.)
7. Don’t be afraid to use temporary-scaffolding designs. Their cost must be seen in the light of

the value of making some progress, and getting practical experience.
8. Don’t be worried that your design is inelegant; it is results that count, not style.
9. Don’t be afraid that the stakeholders won’t like it. If you are focusing on the results they

want, then by definition, they should like it. If you are not, then do!
10. Don’t get so worried about ‘‘what might happen afterwards’’ that you can make no practical

progress.
11. You cannot foresee everything. Don’t even think about it!
12. If you focus on helping your stakeholder in practice, now, where they really need it, you will

be forgiven a lot of ‘sins’!
13. You can understand things much better, by getting some practical experience (and remov-

ing some of your fears).
14. Do early cycles, on willing local mature parts of your user/stakeholder community.
15. When some cycles, like a purchase-order cycle, take a long time, initiate them early (in the

‘Backroom’), and do other useful cycles while you wait.
16. If something seems to need to wait for ‘the big new system’, ask if you cannot usefully do it

with the ‘awful old system’, so as to pilot it realistically, and perhaps alleviate some ‘pain’ in
the old system.

17. If something seems too costly to buy, for limited initial use, see if you can negotiate some
kind of ‘pay as you really use’ contract. Most suppliers would like to do this to get your
patronage, and to avoid competitors making the same deal.

18. If you can’t think of some useful small cycles, then talk directly with the real ‘customer’,
stakeholders, or end user. They probably have dozens of suggestions.

19. Talk with end users and other stakeholders in any case, they have insights you need.
20. Don’t be afraid to use the old system and the old ‘culture’ as a launching platform for the

radical new system. There is a lot of merit in this, and many people overlook it.

4 Workingwithinmany varied technical cultures since 1960 I have never found an exception to this – there is always away!

Figure 10.6
Ideas to assist identifying steps.

314 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH010.3D – 291 – [291–320/30] 29.6.2005
12:44PM

At a large German telecommunications business, almost 1,000
software engineers had been working for three years on a major
new world-market product. The hardware was ready, but the
software was late. I was told by the Financial Director for the
project that the next month, December, was the actual deadline
for product delivery, but that their 40,000 node PERT chart
(really!) estimated they had two or three years more software effort
left. Corporate marketing management had given them one more
year, until December next year. They had to deliver, or forget the
whole market, which by that time would be taken over by com-
petitors.

I suggested re-planning the project into smaller steps with critical
increments first. They told me that this was unthinkable: the software
was ‘already written’ and they claimed that only testing remained.
They also had a rather long list of other reasons why evolutionary
delivery would not work for them.

Using common sense, we worked out a basic evolutionary plan:
we used a day to plan and a second day to sell the idea. We
decided we ought to aim to deliver the small-system software first
(there were 35 signed contracts for it and, none for the medium
and large systems). Then we decided to select for Evo delivery the
fundamental telephone services before any advanced complex
stuff.

After moving through what seemed like seven management layers
(there were probably only four) with ‘‘You must present this to my
boss,’’ we ended up in the office of Herr R., the Project Director. He
thought it was all good common sense, and stared coldly at his (cow-
ardly, cautious?) subordinates as he asked: ‘‘Can you do it this way?’’
When they gave assenting nods, he merely said, ‘‘Then do it!’’

They did! On a return visit in the November of the next year, they
told me that the small systems had been operating for over six weeks
with several real customers and with no problems whatsoever. Note,
three months before the impossible deadline!

The lessons to learn include:

1. Youmust look for Evo steps, don’t assume thatothers havedone so,
2. Evo steps are usually clear, simple and found by using product

knowledge and stakeholder requirements, and
3. You have to get the right person to make the decision to ‘go’

with Evo, usually a senior manager, who is focused on delivering
business benefit.

The product remained a major successful product on the market for
many years. Herr R. correctly concluded that unless the organization

Evolutionary Project Management 315

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH010.3D – 291 – [291–320/30] 29.6.2005
12:44PM

changed its mode of thinking, the same type of project problem would
continue to recur. So he took steps to improve the organization.
Prevention is better than cure!

10.9 Diagrams/Icons: Evolutionary Project
Management

Time

Backroom

‘KITCHEN’

Frontroom

‘RESTAURANT’

Step 1 Step 2

Step 1

Step 2

Step 3

Potential Next Step
(Step 4)

Step 3

A

B

C

D

E

F

G

H

E

G
C

F

B
H

A

D

Implementation Cycle for F

Development
& Production Cycles

Delivery
Cycle

Step 1 Step 2 Step 3

Figure 10.7
Backroom and frontroom activities: diagram showing the relationship between backroom
and frontroom activities. The step components are developed and assembled in the
backroom and then delivered in steps to the frontroom. A frequency of step delivery is
maintained. Step 4 is actually ready ahead of its delivery time and is held back. Note,
given when the system components were ready for delivery, there were several choices
about the delivered step content. The step time lines in the backroom show when
the corresponding frontroom steps were done. For example, G but not H, was complete
by the beginning of Step 2, and G was therefore available for delivery if we decided to
do that.

316 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH010.3D – 291 – [291–320/30] 29.6.2005
12:44PM

A Template For EVO Step Specification

Tag: <Tag name for the step>.
Type: Evo Step.
============================ Basic Information ===========================
Version: <Date or version of last update to step specification>.
Status: <{Specification Stage [{Draft, SQC Exited, Approved}], In Evo Plan, Scheduled Next,
Under Implementation, Delivered awaiting Feedback, Feedback Obtained}, date> <- <Source
(who says ‘Status’ is true?)>.
Quality Level: <Maximum remaining major defects/page, sample size, SQC date>.
Owner: <Who is taking responsibility for the step in terms of specification>.
Stakeholders: <Who are you going to deliver requirements to? >.
Implementers: <Who is in charge of implementing this step>.
Gist: <Brief description of the main idea of this step>.
Description: <Give a detailed, unambiguous description of the step, or a tag reference to a
place where it is described. Remember to include definitions of any local terms>.

Implementation Details: ‘‘Includes relevant details, such as<which product>, <which area of
application system>.’’
Evo Plan: <Tag of the Evo Plan that this step is associated with>.
Step Content: <Step Elements: {Design Ideas, Functions, Tasks, re-used step definitions}>.

============================= Measurement ============================
Test: <Refer to tags of any test plan and/or test cases, which apply to this step>.
Step Validation/Feedback:

Specification Quality Control (SQC): <outcome, date>,
Pre-Delivery Test: <outcome, date>,
Post Delivery Results: <{problems, stakeholder feedback}, date>,
Certification Specification: <refer to the certification plans>.

======================== Priority and Risk Management =======================
Constraints:
<Any legal, political, economic, security or other constraints imposed on implementation>
<- <Source (who says this is true?)>.
Assumptions: <Any assumptions that have been made>.
Dependencies:
<Anything which must be in place, finished, working properly, for us to be able to start this Evo
step or to complete it> <- <Source (who says this is true?)>.
Risks: <Any risks that need to be taken into account>.
Priority:
<Name, using tags, any system elements, which must clearly be done after or must clearly be
done before. Give any relevant reasons>.
Issues: <Unresolved concerns or problems in the step specification or the system>.

=========================== Benefits and Costs ==========================
Rationale: <Justify the existence of this step>.
Step Value:
<Real measurements or estimates of numeric value to stakeholders>. ‘‘Value in terms of
meeting the requirements. At least, the value on scale 0 (none) to 9 (highest).’’
<- <Source (who says this is true?)>.
Step Cost:
<Budgets or real costs>. ‘‘For example, financial costs and engineering hours. These must be
constrained by the Evo 2% policy. At least, the value on scale 0 (very cheap) to 9 (high and
unpredictable).’’ <- <Source (who says this is true?)>.

Figure 10.8
A possible specification template for a one-page Evo step. Notice that the parameters
are designed to give you enough information to decide on the order for step sequencing
in an Evo plan.

Evolutionary Project Management 317

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH010.3D – 291 – [291–320/30] 29.6.2005
12:44PM

10.10 Summary: Evolutionary Project
Management

Dr. Deming had a charming understated way of expressing the out-
come of a venture: ‘‘Survival is not compulsory.’’ Sadly, far too many
projects demonstrate the truth of this and, in the process, waste years
and large sums of money, and deliver nothing except weakened
economy and reputation. Professor Peter Morris in his book, The
Management of Projects, identifies that none of the existing well-known
project management methods really enable sufficiently good control
of projects (Morris 1994). He also outlines that the way forward must
incorporate evolutionary methods. In fact, Evo exists and already has a

All
System

Functions

0% 100%
Goal

Fail

Fail

Reliability

Usability

Impact
of

Step 1

Impact
of

Step 2

Impact
of

Step 1

Impact
of

Step 2

Impact
of

Step 3

Figure 10.9
Dynamic priority: 0% is the baseline level – before we start further evolution of the system.
After Step 1, usability has priority because it is not at an acceptable level (that is, not
better than the specified fail level) yet. Reliability is above the fail level (and thus in the
‘acceptable area’). After Step 2, reliability now has priority because it has not reached
goal level yet. After Step 3, both reliability and usability have reached 100% of their
respective goal targets. Consequently the project is ‘finished’ – no more performance
gaps.

318 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH010.3D – 291 – [291–320/30] 29.6.2005
12:44PM

track record of success; it is just not widely known and practiced
within the systems engineering and other engineering communities.

Hopefully, this chapter has taught the basic concepts of Evo:

. Evo is, above all, the application of the Shewhart process control
cycle, ‘Plan-Do-Study-Act’. It is learning from doing and acting on
that learning. It is adapting to the complex and changing realities of
a project. Evo is systematic engineering work (of the type described
by Koen (Koen 1984).

. Evo is primarily guided by well defined, quantified, but not
necessarily static, multiple requirements for performance and cost.
These requirements represent, at least indirectly, the value system
of the stakeholders. Deviation from the path to reaching the
requirements is corrected with minimum loss of resource. We
are always open to corrections of our requirements. Such correc-
tions are caused either because the world has changed or because
we better understand how to formulate our ‘values’ in terms of
requirements (Keeney 1992).

. Evo is concerned with controlling risks. By insisting on small steps,
you learn early about the project’s capability to deliver, and about
the users, other stakeholders and their system environment. You are
in a position to adapt to what you learn; and also to incorporate any
additional changes requested.

. Evo demands early delivery of the high priority improvements. This
gains credibility for the project and should attract resources to
continue to do so.

Don’t be fooled by the term ‘evolutionary’ into thinking Evo means
‘slow and small change’. If you want change, even revolutionary
change, then Evo project management:

. will give you better results

. will get you faster to market

. will help you meet your deadlines.

Evolutionary Project Management 319

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CH010.3D – 291 – [291–320/30] 29.6.2005
12:44PM

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

PLANGUAGE CONCEPT
GLOSSARY

Glossary Introduction

Purpose of the Glossary

This glossary contains the master definitions of the fundamental
Planguage concepts. Its central purpose is to define ‘concepts’ – not
words. I view this concept glossary as a central contribution of this
book, standing in its own right.

‘‘What’s in a name? That which we call a rose, by any other name would
smell as sweet.’’

Shakespeare, Romeo and Juliet, Act 2
‘‘Every word or concept, clear as it may seem to be, has only a limited range
of applicability.’’

Werner Heisenberg1

With the Heisenberg quotation in mind, this glossary will try to give
the interpretation Planguage intends, when the glossary terms are used
in this book. (If the text and the glossary do not seem to agree, I suggest
you trust the glossary primarily as a correct interpretation.2)
Further explanation of the glossary-defined concepts is found in the
main text (via the index). An updated and extended Planguage
Glossary is also to be found on the website www.Gilb.com and at
www.books.elsevier.com. Space limitations within the book meant
that not all the glossary could be included.

Development of this Glossary

I have not tried to define all possible concepts for a systems engineer-
ing discipline. I have merely concentrated on defining those that I
have found useful in my work.
Some other concepts have been included because the glossary has been
developed in connection with drafting future books in this Planguage

1 Heisenberg, Werner, 1958, Physics and Philosophy, London: Penguin Books (2000),
ISBN 0-141-18215-6, 176 pages.
2 I believe Bertrand Russell (1872–1970) said that if the experts disagree, you cannot be
sure that either one of them is right. So, my advice to trust the glossary must be taken
with caution!

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

series. (The intended titles are Requirements Engineering, Priority Manag-
ement and Evolutionary Project Management. Unpublished versions and
drafts of these are to be found on the website www.Gilb.com.) So, the
glossary may seem somewhat detailed in the context of a single book.
But, the intention is to have a common glossary across all the books in
the series.

Development of Concepts

In defining a concept, I have not attempted to blindly follow any
single particular standard, such as INCOSE, ISO or IEEE. Indeed,
I regularly found them inadequate for the specialized purpose at
hand. I have primarily tried to let the concepts suit my narrow
‘systems engineering’ purposes and, above all, to be consistent with
each other.
It is worth explaining that I have had considerable help and feedback
from my editor and a number of colleagues, correspondents, friends,
students and clients regarding definitions, and the choice of primary
terms. I have served as a final subjective decision-maker because in
language there is no right or wrong, but it is central that the reader
know what the writer intends.
I do view the glossary as open-ended for both my own purposes and
for purposes of the reader. I also view each concept as potentially
capable of continuous improvement in definition.

The Glossary as a Reader-Extendible Tool

I do not mean to impose my terms or definitions on the reader. I
respect their rights and needs to define things, in any useful or
traditional way for them. I also respect their right to rename any
terms. I just needed to take a position on concepts and terms in order
to communicate and develop my own ideas. I intend to develop the
glossary as needed, and the reader should feel free to do the same, for
their own uses and benefits.
The deeper I have gone into this glossary, the more humbled I have
been with the infinite possibility of improvement. So, I beg the readers
to accept the many imperfections as the best I could do within the
timescales, and still publish it in book form at all. I promise to
continue the improvement, to participate in improvements and to
make this basis freely available at no cost or restriction to people who
want to improve it or make it specialized for their own purposes.
Permission is hereby given to quote from the glossary freely, and
partially, provided suitable credit is given as to origin (! credit to
Tom Gilb is sufficient). Notification of your use would always be
interesting to me, and may result in useful updates and feedback to
you. (Notification of use and reference to Tom@Gilb.com).

322 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

About the Glossary Concepts

A concept can havemany ‘names’ (or ‘tags’ in Planguage), which act as pointers to
it: the names do not change or determine a concept, but merely cross-reference it.
The central, universal identification tag of a concept is its unique concept
number, prefaced by an asterisk, *nnn (for example, *001). The idea behind
the concept numbers is to allow and enable full or partial translation into various
international languages and into corporate dialects.

Concept

Find where Glossary Term is used
via the IndexSource

Related Concepts

Keyed Icon
Drawn Icon

Main Definition

Notes

Concept Number *nnn

English Name (Glossary Term)

Synonyms
Acronym

Type

Abbreviation

Figure G1

“When I use a word”, Humpty
Dumpty said, in a rather scornful
tone, “it means just what I choose it
to mean—neither more nor less.”
“The question is”, said Alice,
“whether you can make words mean
so many different things.” “The
question is”, said Humpty Dumpty,
“which is to be master—that's all.”
Lewis Carroll, Through the
Looking Glass, Chapter VI
(Humpty Dumpty), 1871.

Figure G2
Alice meets Humpty Dumpty3.

3 Illustration by John Tenniel to Chapter 6 of ‘Through the Looking-Glass’ by Lewis
Carroll. Wood-engraving by Thomas Dalziel. Illustration from http://www.scholars.
nus.edu.sg/landow/Victorian/graphics/tenniel/lookingglass/6.1html/. Additional Lewis
Carroll text was added in.

Planguage Concept Glossary 323

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

After Concept *313
‘After’ is used to indicate a planned sequencing of events, including
Evo steps and tasks.
Example:
Product Trials: Step: {F2, F1 After F2}.
This means that Product Trials (a tag) is a defined Evo Step consisting of
step elements F2, and then F1.

Aim Concept *001
An ‘aim’ is a stated desire to achieve something by certain
stakeholders. An aim is usually specified informally and non-
numerically.
Example:
Our aim is to be the dominant supplier of mobile phones in China by
the end of the decade.
Note the two constraining qualifiers (China, By End of the Decade) and the
function area (Supplying Mobile Phones).

‘‘ The aim must include plans for the future.’’
<- (Deming 1993 Page 51)

‘‘ It is important that an aim never be defined in terms of activity or
methods. It must always relate to how life is better for everyone.’’

<- (Deming 1993 Page 52).
‘‘ The aim precedes the organizational system and those that work in it.
Workers, for example, can not be the source of the aim, for how would one
know what kind of workers to choose?’’

<- (Deming 1993 Page 52)
Attributed to Deming by Carolyn Bailey.

Notes:
1. When using the term ‘aim,’ the intent may be to simplify, and give the

ambition level.
2. An aim is ultimately specified in the complete and detailed require-

ments specification.
Example:
‘‘Our aim is to have the <best> book on <gardening>.’’
Aim [New System X]: Superior long-term competitive edge in all
market areas and product lines.

Related Concepts: Goal *109; Budget *480; Target *048; Ambition *423;
Mission *097; Vision *422.

Ambition Concept *423
‘Ambition’ is a parameter, which can be used to summarize the
ambition level of a performance or resource target requirement.
Ambition must state the requirement concerned (like ‘Usability’)
and it must contain a notion of the kind of level being sought (like
‘high’).
Notes:
1. The Ambition summary is useful for getting team understanding and

agreement to its concept, before going on to the detailed specification

324 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

work. It can then be used during development of the specification as a
basis for judging the relevance of the details. The Ambition can also be
updated to reflect the detailed specification better, if desired.

2. Once the specification is completed, Ambition provides a useful over-
view summary of the more detailed specification.
Example:
Usability:
Ambition: The system will be extremely/competitively easy to learn,
and to use, for a variety of users and user cultures.
Reference: Quality Attribute Usability Paper, Version 0.2.

Keyed Icon: @.S ‘‘Target and Summary.’’

And Concept *045
‘And’ is used as a logical operator to join any two expressions within a
statement.
Example:
Goal [If War and Inflation]: 60%.
Goal [If Peace And Inflation]: 60%.
Goal [If War AND Stability]: 60%.
To make a statement read better, the lead capital letter can be dropped,
giving ‘and’ rather than ‘And’.

Architecture Concept *192
The ‘architecture’ is the set of components that exist in a system, and
impact a set of system attributes directly, or indirectly, by constraining,
or influencing, related engineering decisions.
Notes:
1. Interesting specializations:

. Perceivable Architecture: the architecture, which is somehow
directly or indirectly perceivable in a real system, as determining
the range of performance and cost attributes possible. This applies
regardless of who, if anyone, consciously specified the architecture
design artefacts.

. Inherited Architecture: the architecture, which was not consciously
selected for this system at a particular level of architecture activity, but
was either incidentally inherited from older systems or accidentally
inherited from the specified design artifacts, specified by architects,
managers or engineers.

. Specified Architecture: the formally defined architecture specifica-
tions at a given level and lifecycle point, including stakeholder
requirements interpretation, architecture specification, engineer-
ing specification done by this architecture level, certification
criteria, cost estimates, models, prototypes, and any other artifact
produced as a necessary consequence of fulfilling the architecting
responsibility.

2. An extensive discussion of the architecture concept is given in (Maier
2002), including Appendix C on the history of attempts to define a
standard within DoD, IEEE and INCOSE.

Planguage Concept Glossary 325

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

3. The highest specified level of design ideas for a defined system is
called the ‘architecture’. The architecture is the collection of con-
trolling design ideas for a defined purpose. The architecture refers
primarily to frameworks, interfaces and other technology and
organizational ideas which more-detailed design ideas are expected
to fit in to.

4. The architecture specifications (*617) would probably be classified as
generic design constraints (or ‘architecture constraints’, if you wanted
to emphasize the idea of ‘architecture’).

5. Architecture specifications would have priority over subsequent design
decisions, made at more-specialized engineering levels.

6. ‘Architecture specification’ is the set of system-wide decisions, which
are made in order to improve the systems survival ability, as it is
threatened by changes to it, and by its environment.

Architecture : A high level design that provides decisions about:
. purpose (What problem(s) that the product(s) will solve)
. function description(s) (Why has it been decomposed into these com-
ponents?)

. relationships between components (How do components relate in space
and time?)

. dynamic interplay description (How is control passed between and
among components?)

. flows (How does data or in-process product flow in space and time?)

. resources (What resources are consumed where, in the process or
system?).

Source: Standard: FAA-iCMM Appraisal Method Version 1.0 A-19,
INCOSE Conference CD, June 1999, Brighton UK [FAA98]
This definition differs from Planguage in that we are primarily concerned
with design aspects, and this contains three requirement notions.
Architecture: The organizational structure of a system or component.
Source: [IEEE 90] in [SEI-95-MM-003].
An IEEE definition of ‘Architecture’.
Related Concepts: Design *047; Design Specification *586; Design Idea
*047; Architecture [Process] *499; Architecture Specification *617; Arti-
fact *645; Systems Architecture *564.
Keyed Icon: . (delta, or a symbol for pyramid).

Architectural Description [IEEE] Concept *618
Architectural description is ‘‘a collection of products to document an
architecture.’’ (This definition is identical with IEEE Draft Standard 1471,
December 1999.)
This concept is generic and can apply to any specific architecture type.
Notes:
1. The intentionally broad term ‘products’ is used to include anything,

which might be useful in describing an architecture. Anything can
include physical models, computerized models, prototypes, blue-
prints, parts lists, planned test results, actual input and outputs from
tests, Planguage architecture specifications, sales and training

326 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

materials, and real systems – as long as their purpose is to document
an architecture.

2. The term ‘Architecture Description’ is an IEEE term, it is NOT used
in the Planguage sense of a ‘Description’ parameter: it should really be
equated to the Planguage term, ‘Definition.’)

Related Concepts:
. Architecture Specification *617: This concept does not include models
and real systems, but only abstract specifications

. Systems Architecture *564: An architecture description can be for any
specialized subset of a systems architecture, such as software or hydraulics.

. Architecture *192: this is the real set of artifacts that the architectural
description describes.

Architecture Engineering Concept *499
The architecture engineering process puts in place the systems
architecture, which is a controlling mechanism for the design
engineering of any project.
Architecture engineering defines the strategic framework (the systems
architecture), which design engineering has to work within. It lays down
the standards, which help control such matters as the tradeoff
processes amongst requirements. It helps synchronize design
engineering disciplines across different systems.
The architecture engineering process is a subset of the Systems
Engineering process.
Notes:
1. The architecture engineering process is distinct from the larger systems

engineering process in that it is focused on design issues. (Systems
engineering is broader. It includes consideration of the requirements,
quality control, project management, and any other discipline, that is
useful for satisfying requirements.)

2. The architecture engineering process is distinct from the other
system level design engineering processes because it operates at a
higher level, and is therefore concerned with wider issues. It has to
consider the overall strategic framework and provide guidance to
all the lower-level systems. It considers especially the long-term
objectives, and the totality of the requirements for all systems.

3. The architecture engineering process is, ideally, technologically neu-
tral. It should provide guidance on design, using any relevant
technology, policy, motivation, organizational idea, contractual
agreement, sales practice and other devices. One of the main criteria
is that the architecture is cost-effective. Note that technological
neutrality is not always achieved! For example, promotion of the
use of standard platforms could be included within a systems
architecture; and while that is an architectural decision, it is not
technologically neutral.

Synonyms: Architectural Engineering *499; Architecting *499.
Related Concepts: Systems Architecture *564; Architecture *192;
Requirement Engineering *614; Design Engineering *501; Architecture
Specification *617.

Planguage Concept Glossary 327

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Architecture Specification Concept *617
An architecture specification is the written definition of an architectural
component.
Notes:
1. An architecture specification either specifies a component of a systems

architecture, or it specifies an architectural component of a specific system.
2. An architecture specification is a specialized form of design specification.
3. Architecture (the collective noun) is the real set of artifacts that the

architecture specification describes. In other words, this is the observa-
ble architecture in a defined system. The specification may be describ-
ing desired future states of that system. Some parts of that specification
might never be implemented in practice, since it serves as a vehicle to
discuss architectural possibilities and options.

4. An Architecture Specification is not as broad as an Architecture
Description [IEEE], which can also include models, prototypes and
real systems to aid architectural description.

Synonyms: Architectural Specification *617.
Related Terms Architecture *192; Architecture Engineering *499; Sys-
tems Architecture *564; Architecture Description *618.

Assumption Concept *002
Assumptions are unproven conditions, which if not true at some defined
point in time, would threaten something, such as the validity of a
specification or the achievement of our requirements.
‘Assumption’ is a parameter that can be used to explicitly specify any
assumptions made in connection with a specific statement.

‘‘Assumptions are suppositions, conjectures, and beliefs which lack
verification at the time of writing, or requirements and expectations
that are not within our power to control, but which have been used as
part of the basis for planning future actions. We identify for each the
degree of risk involved and possible consequences if the assumption is
erroneous.’’

<-Don Mills, NZ 2002 (Personal e-mail)
Notes:
1. We need to document our assumptions systematically in order to give

warning signals about any conditions that need to be evaluated, or checked,
to ensure that a specification is valid.The aim is that the assumptionswill be
considered at the relevant future points in time, and that anyone with any
additional information concerning an assumption (including lack of spe-
cification of an assumption), will volunteer it as soon as possible.

2. The purpose of the Assumption parameter is to explicitly state ‘other-
wise hidden’ or undocumented assumptions. This permits systematic
risk analysis.

3. There are many different ways in Planguage to express assumptions.
Alternatives to using the Assumption parameter include using the
Rationale, Condition and Basis parameters.
Example:
Hierarchic Structure [Health and Safety System]:
Type: Design Specification.
Description: A hierarchical database structure will be used.

328 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Assumption: No negative impact on performance of Emergency and
Rescue Inquiries <- JB.
Impacts: Access Response, Portability.
Is Impacted By: Available Database Packages.
Rationale: This structure is compatible with the current structure, and
can be directly converted to it.
Condition: Off-the-shelf software can be used, and no in-house sup-
port is needed.
Basis: Health and Safety System required by National Law.

4. It would be good practice to specify the consequences of a failure for the
assumption to be true. Use Impacts, Supports and similar parameters
just below the Assumption statement. See above example.

5. It would also be good practice to specify the things that determine if
this assumption is going to be true. Use Depends On, Authority,
Source, Is Impacted By and similar parameters just below the Assump-
tion statement. See above example.

Related Concepts: Basis *006; Rationale *259; Condition *024; Quali-
fier *124; Risk *309.

Attribute Concept *003
An attribute is an observable characteristic of a system. Any specific
system can be described by a set of past, present and desired
attributes. There are four main categories of attribute:
. Performance: ‘How Good the System Is’
. Function: ‘What the System Does’
. Resource: ‘What the System Costs’
. Design (or Architecture): ‘The Means for delivering the System’
All attributes are qualified by Conditions, which describe the time,
place and events under which the attributes exist.

Attribute: ‘‘A characteristic of an item; for example, the item’s color, size, or
type.’’

Source: Dictionary of Computing Terms, IEEE 630-90.
Notes:
1. Performance and resource attributes are scalar (described by a scale of

measure). Function and design attributes are binary (either present or
absent).

2. Attributes can be complex. They can be defined by a sub-set of
elementary attributes.

3. An attribute may be described by any useful set of Planguage parameters.
Example:
Reliability: ‘‘The attribute tag name.’’
Ambition: High duration of operation. ‘‘Summary of the target.’’
Scale: Hours of <uninterrupted service>. ‘‘Defining the measure.’’
Goal [Next Release]: 6,000 hours. ‘‘The required target level for the
attribute.’’
The tag (Reliability) and the parameters (Ambition, Scale and Goal)
provide a systematic framework for defining and referring to a scalar
attribute’s components.

Synonyms: Characteristic *003; Property *003.
Related Concepts: Performance *434; Function *069; Resource *199;
Design *047.

Planguage Concept Glossary 329

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Author Concept *004
An author is the person, who writes or updates a document or
specification of any kind.
Notes:
1. This is a generic term, which depending on the specific document type,

is usually replaced by specific roles, such as {engineer, architect, manager,
technician, analyst, designer, coder, test planner, specification writer}.

Synonyms: Writer *004; Specification Writer *004.
Related Concepts: Owner *102.

Authority Concept *005
Authority is a specific level of power to ‘decide’ or ‘influence’ or ‘enforce’ a
specific matter requiring some degree of judgment or evaluation. For
example, the status of a specification is usually the responsibility of some
‘authority’ (somesetof individuals holding the specificauthority). Authority is
oftenheldbya specified individualorbyanorganizationalgroup.A specific
rolemay hold the authority. In addition, a document that is authorized can
be used, within the document’s scope, as a source of authoritative
information (in lieu of access to the people holding the authority).
An Authority parameter is used to indicate the specific level of
authority, approval, commitment, sanction, or support for a specified
idea, specification or statement.
Notes:
1. This is not the same as ‘Source,’ which is the written or oral source of

information. A Source might convey no authority whatsoever (for
example, ‘‘60% <- My best guess!’’).
Example:
Past [Last Year]: 60% <- Marketing Report [February, This Year].
Authority: Marketing Director [Tim].

Background Concept *507
Background information is the part of a specification, which is useful
related information, but is not central (core) to the implementation, nor
is it commentary.
Example:
In a requirement specification, the benchmarks (Past, Trend, Record)
are not the actual requirements (not ‘core’), but they are useful ‘back-
ground’ to the requirements.
The key requirement targets (Goal and Budget levels) and constraints
(Fail and Survival levels) are central (core) to implementation, and are
therefore not background.
Notes:
1. Parameters are clearly typed as either ‘core’ (for example, Scale, Meter

and Goal) or ‘background’ (for example, Ambition, Gist and Past), or
‘commentary’ (for example, Source and Note).

2. Background specifications are essential to the understanding and use of
a specification. However, any defects in background will not necessarily
materially and/or negatively impact the real system. Such defects might
potentially have bad impacts when used in a certain way. For example,
when a Goal (core specification) is set on the basis of an incorrect Past

330 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

or Record (background specification) the resulting Goal level (a ‘core’
specification) will be incorrect.
Specification defects in ‘background specification’ are either major or
minor, depending on our judgment, in the specific context, of the
potential consequences.
Example: [Background Parameters]
. Benchmarks {Past, Record, Trend} . Owner . Version . Stakeholders
. Gist . Ambition

Related Concepts: Non-Commentary *294; Core Specification *633;
Commentary *632; Specification *137.

Backroom Concept *342
Backroom is an adjective or noun, referring to a conceptual place,
used to describe any processes or activities in Evo that are not
necessarily visible to the Evo step recipients.
Notes:
1. Typically, Backroom is used to refer to the development and produc-

tion cycles of the Evo result cycle.
2. This is where concurrent engineering takes place. Backroom activities

(for example, detailed design, purchasing, construction and testing)
may have to be carried out in parallel with other activities as step
preparation (prior to being ready for delivery), can take arbitrary
lengths of time. The overriding Evo requirement is for frequent
stakeholder delivery cycles.

3. Evolutionary project management needs to manage the backroom and
frontroom as one synchronized process.

Related Concepts: Frontroom *343.

Baseline Concept *351
A system baseline is any set of system attribute specifications that
defines the state of a given system.
Frequently, the choice of system baseline is governed by project
timescales; a significant project milestone date in the past will be
selected and then it is simply a case of determining the relevant
individual attribute baselines on that date.
An attribute baseline is a benchmark that has been chosen for use as a
start point to measure any relative system change (estimated or
actual) against.
Notes:
1. Within Impact Estimation, for each scalar attribute a ‘Baseline to

Target Pair’ is declared. The chosen baseline is usually a Past level
and represents zero percentage impact (0%). In an IE table, each
baseline to target pair appears immediately under the tag of its attri-
bute on the left hand side on the table.
Example:
QX: Quality.
Scale: Time to complete a defined [Task] for a defined [Person Type].
Baseline: Past [Task¼Learn to Drive Off, Person Type¼Experienced
Driver, Our Competitor’s Product]: 1 minute.

Planguage Concept Glossary 331

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Target: Goal [Task¼Learn to Drive Off, Person Type¼Experienced
Driver, Our New Product]: 10 seconds.
This example shows setting a baseline and a target for a quality, QX.

Example:
ABC: IE Table [Baseline Date¼Nov 7, Target Date¼Dec 7].
QX:
BABC: Baseline [ABC]: Past [. ‘‘declare as a baseline for ABC
IE table’’].
TABC: Target [ABC]: Goal [. ‘‘declare as a target for ABC IE
table’’].
Baseline to Target Pair [ABC]: 1 minute <-> 10 seconds. ‘‘deduced
from baseline and target declarations above. Strictly not needed as
repetition.’’
This example shows an alternative way to set a baseline and target. It
introduces the idea of declaring a Baseline Date and Target Date applying
across an IE table.

Design ‘ADI’ has zero percentage impact, meaning that if Design ‘ADI’
were implemented then there would be no visible change in the quality
level (it would remain at one minute and there would be no forward
progress towards the target (10 seconds)).
Design ‘CDI’ would be even worse than the baseline and the quality level
would be worse than before.

Related Concepts: Benchmark *007.

Basis Concept *006
A basis is an underlying idea that is a foundation for a specification.
A ‘Basis’ parameter is used to explicitly specify a foundation idea, so
that it can be understood and checked. Hopefully, if necessary, a basis
specification will be challenged and corrected. It is a tool for risk
analysis.
Notes:
1. Basis statements are used to declare a set of conditions, which we

assume will be true. We want to make it quite clear that the
related statements are entirely contingent upon the conditions being
true.
A Basis statement is, or will be, for the appropriate qualifier time,
place and other conditions, fundamental and stable. We state a
Basis in case it is untrue, or is a misunderstanding, or needs
improvement in specification: the intended readership needs to
check whether they agree that a Basis statement applies. In addi-
tion, we state a Basis to ensure that the conditions are checked
later, at the relevant time.

Table G1 ABC: IE table.

Design Idea -> ADI BDI CDI DDI

QX

1 minute<–> 10 seconds 0% 100% "20% 150%

332 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

2. Basis is different from Assumption. An Assumption is a set of state-
ments, which we expect be true in the planning horizon (for example,
the dates indicated in Goal and Fail parameters), but we cannot be sure ;
they can well change. The related specification may need updating if
they do.

3. Basis is quite different from Rationale. A Rationale is a set of
statements, which lead to a desire to make a specific specifi-
cation. It explains how we got to that particular specification. Basis
is a set of statements, which are the foundation on which a
specification is made. If the result of evaluation of any of the
relevant Basis statements changes, then the specification may no
longer be valid.
Example:
Fail [A1]: 60%, [Not A1]: 50%? <- Guess as to consequence.
A1: Assumption: Drugs Law [Last Year] is still in force and unchanged
with respect to this plan.
Basis: Drugs Law ‘Conditions for Approval for Human Trials’<-
Pharmaceutical Law [Last Year].
Rationale: Our Corporate Policy about following laws, strictly and
honestly <- Corporate Ethics Policy.
Condition: Applies only to<adult, voluntary, healthy, field-trial people>.
‘A1’ is a defined assumption that can be reused in this or other contexts.

Synonyms: Base *006; Foundation *006.

Before Concept *312
‘Before’ is a parameter used to indicate planned sequencing of
events, including Evo steps and tasks.
Example:
Stage Liftoff: Step: {Ignition On Before Check Thrust OK, Ignite
Motors} Before Release Tie Down.
The Evo step is planned as a sequence of step elements. Ignition On is to be
done first. Followed by Check Thrust OK. Ignite Motors can be done
anytime in relation to the first two, but, since it is in the brackets, it, as
well as the other two events in the brackets, must be done before Release Tie
Down.

Benchmark Concept *007
A benchmark is a specified reference point, or baseline. There are two
main types: scalar and binary benchmarks.
Notes:
1. A scalar benchmark is a reference level for a performance or resource

attribute. It is usually used for comparison purposes in requirement
specification, design and implementation.

2. A scalar benchmark is normally defined using the benchmark para-
meters {Past, Record, Trend}.
Example:
Usability:
Ambition: Order of magnitude better than future competitors.
Scale: Average time needed to learn to do Typical Tasks for Typical
User.

Planguage Concept Glossary 333

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Trend [Best Competitors, During New Product Lifetime, Europe
Market & USA Market]: 5 minutes.
Fail [New Product, All Markets]: 2 minutes.
Goal [New Product, Initial Release]: 1 minute.
Goal [New Product, 1 Year After Initial Release]: 30 seconds.
‘Trend’ is the benchmark specification.

3. Function and design attributes are specified as binary benchmarks:
binary attributes are either present or absent in a system.

Related Concepts: Baseline *351; Past *106; Record *127; Trend *155.

Benefit Concept *009
Benefit is value delivered to stakeholders.
Notes:
1. Benefits are the positive things that the stakeholders experience from a

system. ‘Bene’ means ‘good’.
2. Benefit differs from stakeholder value. Value is perceived future ben-

efit. Value is reflected in what priority, and consequent resources,
people are willing to give for something, in order to get the benefits
they expect.

3. Benefit is the reality experienced in practice by defined stakeholders.
4. Benefits can include improved stakeholder environment performance,

reduced costs, and improved functionality.
5. Benefits could also include the relaxation of previous constraints.
6. Systems engineering control can only be exercised over benefits, which

have been specified as requirements. Reaching and keeping an unspe-
cified benefit is unlikely!

7. Systems engineering can add value, it is up to the stakeholders to
actually turn that value into benefit by exploiting the system.

8. One way to measure improvements in benefit is to extrapolate from
changes in performance levels.

Synonyms: Gain *009; Profit: Informal use; Advantage: Informal use.
Related Concepts: Value *269; Performance to Cost Ratio *010; Value
to Cost Ratio *635; Effectiveness *053; Stakeholder *233.

Binary Concept *249
Binary is an adjective used to describe objects, which are specified as
observable in two states. Typically, the two states are ‘present’ or
‘absent’, or ‘compiled with’ or ‘not complied with.’
Notes:
1. All the non-scalar attributes are binary (that is, the function and design

attributes).
Related Concepts: Scalar *198.

Budget Concept *480
A ‘budget’ is a resource target: an allocation of a limited resource. A
Budget parameter is used to specify a primary scalar resource target.
The implication of a Budget parameter specification is that there is, or
will probably be, a commitment to stay within the Budget level
(something which is not true of a Stretch or Wish specification).
Example:
Maintenance Effort:

334 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Scale: Total annual Maintenance Engineering Hours per thousand lines
of software code supported.
Budget [First Four Years Average]: 10 hours.
Stretch [First Four Years Average]: 8 hours.
Wish [First Four Years Average]: 2 hours.
Fail [Any Single Operational Year]: 100 hours <- Client payment limit
in contract §6.7.
A Budget specification, together with 2 other resource targets and a
constraint.
Notes:
1. A budget level is often arrived at through a formal budgeting process:

the budget levels usually being set with regard to priorities, and
available financial resources. Sometimes a budget level is determined
by cost estimation, or it is determined by using competitive bidding
and contracting. In some cases, the budget is absolutely fixed in
advance, and we have to try to keep within it by making requirement
tradeoffs or by using ‘design to cost’.

2. At the very least a warning signal should be noted when a budgeted
level is exceeded by a design, by an evolutionary step, or when there is a
risk or threat that the budget might be exceeded. For example, we need
to react if a resource threat to the budget level is discovered while
evaluating potential alternative designs.

3. A resource target is a budget concept (small ‘b’ for budget). In
Planguage, there are several parameters used to specify resource targets
{Budget, Stretch, Wish}. The Budget parameter (capital ‘B’ for Bud-
get) is used to specify the major type of resource target.

Synonyms: Budget Level *480: See Level *337; Planned Budget *480;
Plan [Resource] *480: Historic usage only; Planned Level [Resource]
*480: Historic usage only.
Related Concepts: Aim *001; Resource Target *436: Synonym is budget
(the concept); Target *048; Stretch *404; Wish *244; Ideal *328; Goal
*109.
Keyed Icon: > ‘‘A single arrowhead pointing towards the future.
The same basic icon as for Goal *109, but always use an input
arrow to a function oval to represent a resource attribute. In context:
--->--->O
The Budget icon is the ‘>’ on the arrow. If other levels for the resource are
shown on the same arrow, the positioning of the tips of the icon symbols
reflects the levels relative to each other.’’

Catastrophe Concept *602
A catastrophe level of an attribute is where disaster threatens all, or
part, of a system. Catastrophe can mean a variety of things such as:
. contractual non-payment performance level
. illegal quality level
. totally unacceptable level for defined stakeholders
. a level which causes the entire system to be useless (that is, worse
than the survival limit).

The Catastrophe parameter can be used to specify any such known
disaster level. Using the Survival parameter is another option. (These two
parameters are the two sides of the same level.)

Planguage Concept Glossary 335

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Notes:
1. The default assumption is that the catastrophe is for the complete system.

If it is not, then qualifiers must limit its scope.
2. If a design or architecture threatens to result in any attribute being equal

or worse than its Catastrophe Level, then you would discard the design,
abandon or modify the requirement, or potentially abandon the project.

3. A catastrophe is not a transient failure – that is we do not expect the
system to recover without some major intervention.
Catastrophe does not imply complete irrecoverable failure. After the event,
someone might change their mind and decide to ‘bail out’ the system. But
Catastrophe, once reached, is most likely to be irrecoverable in practice.

4. A Catastrophe Range starts from the ‘best’ Catastrophe Level and goes
in the direction of ‘worse’. This can be made explicit by describing the
Catastrophe Range, not just the Catastrophe Level (Describe the range
by using ‘or less’ or ‘and worse’ after the numeric value).
Example:
Catastrophe [System Wide]: 60% or less.
Catastrophe [Security]: 60%.

Keyed Icon: . ‘‘A full stop. In context, a series of ‘.’ indicates a Catastrophe
Range ------->--!--------]>O [-----!-->----------->
The Survival icon (square brackets on a scalar arrow icon [----]>)
can be used to emphasize the transition from Survival status to Cata-
strophe (non-survival) status.’’
Synonyms: Catastrophe Level *602; Catastrophe Limit *602; Intolerable
*602; Catastrophic Failure: Informal use only; Death: Informal use only;
Non-Survival: Informal use only.
Related Concepts: Survival *440; Range *552: For description of ‘Cat-
astrophe Range.’
Historical Note: The idea for Catastrophe originated from Terje Fossnes and
Cecilia Haskins in August 2002.

Checking Rate Concept *015
The checking rate is the average speed at which a specification is
checked by a checker, using all the relevant related specifications
and standards {the main specification, rules, checklists, source
documents and kin documents}.
Notes:
1. The checking rate is critical for Specification Quality Control, and

must normally be about 300 significant words (of checked main
specification) per hour. This can vary (0.1 to 1.9 hours per 300
significant words), depending on many factors, such as the number
of documents to be referenced while checking. The optimum checking
rate is the checking speed that in fact works best for an individual
checker to do their assigned tasks.

Related Concepts: Rate *139; Optimum Checking Rate *126.

Checklist Concept *016
A‘checklist’ for SQCusually takes the formofa list ofquestions.All checklist
questions are derived directly and explicitly from cross-referenced
specification rules. Checklists are ‘stored wisdom’ aimed at helping to
interpret the rules and explain their application. Checklists are used to
increase effectiveness at finding major defects in a specification.

336 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Example:
STDQ: Rule: All critical project requirements must always be expressed
numerically and measurably.
This is the rule. The associated checklist question is designed to help people
understand how to apply the rule in practice, and identify any defects
breaking the rule.
Checklist Q: Are all performance concepts (including all qualitative
concepts – all ‘-ilities’) expressed quantitatively? <- Rule.STDQ.
An example of a checklist question with the rule it supports (STDQ) being
referenced.
Notes:
1. Checklists are like law court interpretations of the law. They are not the

official ‘law’ itself, but they do help us understand the proper interpreta-
tion of the law. Anyone can write checklists at any time to give advice on
how to check. They are intentionally less formal to create, and to change,
than specification rules. They do not necessarily have formal ‘owners.’

2. Checklists should not be used instead of a proper set of rules, which is
maintained by an engineering process owner. They are only intended
as a supplement for checkers. Issues can only be classified as real
defects if they can be shown to violate the official agreed rules for a
specification.

3. Less formal ‘de facto checklists’ also exist. These include any docu-
ments that can be used to check a document with a view to identifica-
tion of defects. These can have other names and even other purposes
than a ‘pure’ checklist. Examples of ‘de facto checklists’ include
‘sources,’ ‘standards,’ ‘guidelines,’ ‘templates’ and ‘model documents.’
If they help check, they must be some sort of checklist, irrespective of
what people call them or intended them to be used for.

Commentary Concept *632
Commentary specifications are remarks about other specifications.
Commentary specifications will probably not have any economic,
quality or effort consequences if they are incorrect: defects in
commentary are almost always of minor severity.
Example:
. Note . Comment . ‘‘Text in quotes’’ . Source
Related Concepts: Non-Commentary *294; Core Specification *633;
Background *507; Specification *137.

Complex Concept *021
A complex component is composed of more than one elementary
and/or complex component.
Notes:
1. A complex component consists of several sub-components. The sub-

components may be all of the same type as the component, or of
several different types.

2. Requirements, Design Ideas and Evo Steps are often complex components.
Example:
Goal [Alpha]: 30%, [Beta]: 20%. ‘‘This is a complex statement.’’
Goal [Theta]: 50%. ‘‘This is an elementary statement.’’

Related Concepts: Elementary *055; Component *022.

Planguage Concept Glossary 337

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Concept [Planguage] Concept *188
A Planguage concept is a formally specified idea used in Planguage.
Notes:
1. There are several types of concept found in Planguage specification.

These include:
. formal Planguage concepts defined in this glossary or other Plan-
guage glossaries and assigned a concept number (*nnn). Some
concept names are written with a Capital letter first, to signal that
they are formally defined terms. Examples: Scale, Goal, and
Defined As.

. user-defined terms.
2. A Planguage concept, once defined, can be referenced by any

useful synonyms or identifiers. These include tags, keyed
icons, drawn icons, abbreviations, synonyms, acronyms and alter-
native language terms (for example, German or Japanese terms).

3. The central idea of a Planguage concept is that the concept itself is
independent of the particular means (pointer, reference, cross-refer-
ence, tag, icon, concept number) that we choose to apply in order to
reference that concept. We can focus on the concept, and not the
particular term, about which people might disagree or have cultural
difficulties in accepting.

4. Defined concepts can be:
. reused without explaining them again
. redefined by Planguage users locally (which simultaneously changes
(hopefully improves) the definition of all the other terms, which
reference the defined concept)

. referenced by a set of terms in any language, without necessarily
having to rewrite the concept definitions themselves in that lan-
guage. For example, the concepts could be defined in English, but
a Norwegian set of pointers to the concepts can be quickly defined,
to permit teaching or multinational project learning and use of
specifications.

Example:
Begrep [Norwegian Bokmål]¼ *188 ‘‘Concept [Planguage, US].’’
Tilstand [Norwegian Bokmål]¼ *024 ‘‘Condition [Planguage, US].’’
Marked [Norwegian Bokmål]¼Market [Corporate Glossary].
Is [Norwegian Bokmål]¼ Ice Cream [Project XYZ Glossary].
In these examples Planguage concepts like *188 are given a foreign
language name (‘Begrep’) in Norwegian. Using the synonym, ‘Begrep,’ a
user can access the full definition in English.

Synonyms: Planguage Concept *188.
Related Concepts: User-Defined Term *530; Planguage *030.

Condition Concept *024
A condition is a specified pre-requisite for making a specification or a
system component valid.
Notes:
1. Evaluation of the status of a condition can be carried out anytime, and

on many different occasions, each with a potentially different result.

338 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

The result of an evaluation of a condition is the ‘current condition
status’ or more simply, ‘status.’

2. Evaluation of a condition will determine if its status is currently true or
false.

3. There are several distinct kinds of conditions:
. Reusable Conditions
. Qualifier Conditions
. Pre-requisite Conditions
Reusable Conditions:
The Planguage parameter ‘Condition’ is used to define conditional
terms. The ‘true or false’ status of such a term can be determined when
required. This parameter statement can be used to define:
. reusable conditions (conditions that many other statements can
make use of)

. conditions which are complex, and get simplified by having a single
tag to express them.

Example:
Senior: Condition {SeniorCitizenOr Service over 20 years toCompany}.
Pass Through: Condition: Traffic Light {Green, Yellow, Blinking
Yellow, Not Red}.
Qualifier Conditions:
One or more qualifier conditions can be used to specify a statement
qualifier (for example, ‘[End of March, USA, If Peace]’). A statement
qualifier must be completely true for the qualified statement to be
valid.
Example:
Level X: Goal [A, B, C]: 33%.
Note: Level X is only a valid Goal when all three qualifiers {A & B &
C} are true/valid.
Another example, a Goal level specification is only valid when all the
conditions in its qualifier are true. The qualifier in the Goal statement
below has three conditions.
Example:
Goal [Year¼Releaseþ 1 Year, Market¼Europe, Not War]: 66%.
A qualifier condition may consist of an explicit tag name with an
appropriate variable declared (for example, ‘Market¼Europe.’ ‘Mar-
ket’ is the tag name and ‘Europe’ is the variable).
If there is no ambiguity, the tag name may be implied and simply the
variable is stated.
A qualifying condition may, or may not, be satisfying a Scale qualifier.
Example:
Learning Time:
Scale: Time in minutes for a defined [Role] to <learn> a defined
[Task].
Goal [Task¼Login, Role¼Operator, Country¼ Spain]: 2 minutes.
In the above example, ‘[Task¼ Login, Role¼Operator]’ is a statement
qualifier.
Both ‘Task’ and ‘Role’ are qualifier conditions. They are also both
Scale qualifiers. Task is assigned a variable of ‘Login,’ and ‘Role’ a
variable of ‘Operator’.
‘Country¼ Spain’ is an additional qualifier condition, which has been
added. It is not a Scale qualifier.

Planguage Concept Glossary 339

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

If the Task under consideration is ‘Login,’ the Role is ‘Operator’ and the
Country is Spain, then the target goal for considerationmust be 2minutes.
In other words, the evaluation of the statement qualifier as ‘true’
depends on all its qualifying conditions being ‘true.’ Each qualifier
condition is only true if its variable matches the specific instance being
considered (Task is ‘Login,’ Role is ‘Operator’ and Country is ‘Spain’).
Each qualifier condition might have a set of valid variable settings. For
example, Country: {Spain, USA, Germany}.
Pre-requisite Conditions:
A set of conditions, can be used as a prerequisite for a system compo-
nent, such as entry to a defined process, or exit from a defined process,
or use of a product. Any such conditions should be explicitly listed as
pre-requisites or qualifications.
Example:
Exit Conditions:
X1: Senior. ‘‘See definition in above example.’’
X2: Level X. ‘‘Not only A & B & C, but also 33% Goal reached.’’

Example:
Process: Evening Closedown [Application: Default: ABC].
‘‘The square brackets, ‘[]’, specify a qualifier condition. It asks the
question: Which application is this generic process being applied to?’’
Gist: Application process for evening closedown for the night.
Entry Conditions:
E1: All users have logged off. ‘‘A condition. Are all users logged off:
true or false?’’
E2: After 8pm. ‘‘Another condition. Is time after 8pm: true or false?’’
Procedure
. . . ‘‘If all entry conditions are met (that is, are ‘true’), then it is ‘valid’
to carry out the process.’’

Synonyms: Conditional Term *024; Pre-Requisite Condition *024.
Related Concepts: Condition Constraint *498; Qualifier *124; Status
*174: The result of the evaluation of a condition.
Keyed Icon: [<condition tag name>]

Condition Constraint Concept *498
A condition constraint is a requirement that imposes a conscious
restriction for a specified system scope. A condition constraint, also
called a ‘restriction,’ is a binary type of requirement.
Notes:
1. A condition constraint differs from a ‘condition’ in that some kind of

failure, invalidity, problem, dependency, risk, or other problem may
be experienced, if the constraint is not met. It serves as a warning signal
for problems.
Example:
CCR: Constraint [Release 1]: Initial product must be delivered before
the end of January.
Rationale: Financial penalties apply if this contractual deadline is not
met <- Contract Section 2.4.

2. A condition constraint can be categorized by innumerable useful
categories, but some common ones are design, legal, cultural, market,

340 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

geographic, safety, and language. (Note these categories can also
apply to other types of constraint, for example, a certain level of
reliability – a scalar performance constraint – could also be a ‘legal
constraint’).
Example:
C1: Constraint [Language]: All official languages of a market will be
fully supported in the user interface, and all training and handbook
information.
C2: Constraint [Safety]: All Electrical Equipment brought onboard
any Corporate Aircraft as Standard Kit will comply with Corporate
Electrical Safety Standard 1.5.

Synonyms: Restriction *498.
Related Concepts: Condition *024; Constraint *218; Status *174: Syno-
nym is ‘State’.

Consists of Concept *616
‘Consists Of’ is a parameter used to list a complete set of the sub-
components or elements comprising a component.
Example:
Security:
Consists Of: {Integrity, Attack}.
Alternatively, Security¼ {Integrity, Attack}.
Related Concepts: Includes *391 ‘‘Used to list some, but not necessarily
all components’’; Element *022.
Keyed Icon:¼ { . . . } ‘‘Is equal to the set.’’
Example:
Core Family¼ {Mother, Father, Children}.

Constraint Concept *218
A constraint is a requirement that explicitly and intentionally tries to
directly restrict any system or process. A key property of a constraint is
that a penalty or loss of some kind applies if the constraint is not
respected.
Constraints include limitations on the engineering process, a system’s
operation, or its lifecycle.

‘‘A constraint is ‘something that restricts’.’’
(The American Heritage Dictionary (Dell))

Notes:
1. There are two kinds of constraints: Binary and Scalar.

Binary constraints are statements that tend to include the words ‘must’
or ‘must not’: that is, they tend to make demands about what is
mandatory for the system or what is prohibited for the system. Binary
constraints are declared either by using a Constraint parameter or by
specifying ‘Type: Constraint.’
Example:
C1: Constraint: A design idea must not be made of material, compo-
nents or products only produced outside the European Market, if there
is any EU material which can be used.
C2: Constraint: The design must contain ideas based on our own
patents whenever possible.

Planguage Concept Glossary 341

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

C3:
Type: Constraint.
Defined As: All stakeholder critical qualities must be planned and
delivered so that they are viewed as obviously and significantly better
than any competitor in the same price range.
From an attribute viewpoint, binary constraints are function con-
straints, design constraints or condition constraints.
Scalar constraints are specified for performance or resource attributes.
They are specified using Fail and Survival parameters, which set the
constraint levels on a scale of measure.

2. All engineering specifications (requirements and design) and manage-
ment plans, once stated, potentially and probably have some constrain-
ing influence on the rest of the planning or engineering process. So all
specifications and plans are ‘constraints’ in this sense.
However, we can clearly distinguish between specifications where
the primary intent is to constrain (like a mandatory constraint or a
level for Survival), and those specifications where the primary idea
is not to constrain, but to motivate positively (for example, a binary
function target or, a scalar performance target, such as a Goal or
Stretch level). We could classify the former as ‘intentional and
direct constraints’ and the latter as ‘unintentional and indirect
constraints’.
So, we only classify specifications and concepts as ‘constraints’ when
the clear intent and primary purpose is to restrain, limit, restrict
constrain or stop.

3. You have to look at constraints from a ‘stakeholder’ viewpoint. As with
any requirement or design, what is a requirement for one level of
system stakeholder, is a constraint as viewed by sub-ordinate stake-
holder levels.
One stakeholder’s requirement is another stakeholder’s constraint.

4. All constraints are valid for their associated defined conditions. Some-
times the constraint conditions are stated explicitly, sometimes they are
implied or inherited from more global specifications.
A ‘global’ constraint is usually imposed by higher levels of authority, or
by earlier planning processes. For example: by company policy, law,
contract, strategic planning or systems architecture.
Example:
An example of a global constraint:
Availability Criteria: Constraint: No Company Product shall ever be
designed with less than 99.5% availability.
A corresponding local constraint setting a higher constraint level:
Fail [US Market, Military Systems]: 99.98%.

5. Constraints can be classified by the ‘relative level of organization’ they
apply to, as proposed by Ralph Keeney (1992):
. Fundamental Constraints: handed down to us from higher authority
. Strategic Constraints: ones we have imposed at our own level, over
which we have control

. Means Constraints: constraints imposed at levels supporting us,
which we can therefore overrule.

6. All requirements, including all constraints, have different ‘priority.’
This priority (or ‘power’) is determined by the conditions (the

342 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

qualifiers) and by their related specifications (for example, by para-
meters like ‘Authority’). It is a complex process to determine constraint
priority, and the ‘answer’ is dynamically changing. There is probably
no absolute constraint that must be respected ‘no matter what.’ That
is, there might always be a higher priority consideration that overrides
a given constraint. For example, ‘Thou shalt not kill (except in self-
defense).’

7. Constraints always represent, in some way, some of the values of
some stakeholders. But a given constraint does not necessarily agree
with the values of all stakeholders. The constraint of one stakeholder
might be in direct conflict with the requirements of another stake-
holder.

8. Any set of categories (including no categories!) can be specified for
classifying constraints. System, performance, budget and design are
an arbitrary few such categories.

9. I view constraints as borders around a problem. We can do any-
thing we like within the borders, but we must not wander outside
them.

OK

Figure G3
Constraints impose restrictions on both other requirements and designs. But the remaining
space (‘OK’) gives considerable freedom to set more-exact requirements, and to specify
more-exact designs.

---[------! -------

---[------! -------] ----------

Performance Constraints

Resource Constraints

Function ConstraintDesign Constraint Condition Constraint

] ----------

Figure G4
Drawn Icons for Constraints.

Planguage Concept Glossary 343

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

10. A requirement is a ‘constraint on succeeding engineering processes’ if and
only if it has an authority, or other form of priority, which means that:
. you must stay within its guidelines (when making later decisions or
specifications)

. you cannot change it yourself (in order to avoid obeying it), without
authority to do so.

Related Concepts: Requirement *026; Function Constraint *469; Per-
formance Constraint *438; Resource Constraint *478; Design Constraint
*181; Condition Constraint *498; Survival *440; Fail *098.
Keyed Icons: For Survival: [and/or] and for Fail: !
‘‘In context: ----[----!---]---->O---[-------!---]----->’’

Continuous Process Improvement Concept *424
Continuous Process Improvement (CPI) includes any and all continuous
long-term effort to systematically improve an organization’s work
processes.
Acronym: CPI *424.
Related Concepts: Defect Prevention Process (DPP) *042; Statistical
Process Control (SPC) *466.

Core Specification Concept *633
Anything classed as, ‘core specification,’ will result in real system
changes being made: incorrect core specification would materially
and negatively affect the system in terms of costs, effort or quality.
Specification defects in core specification are almost always of major
severity.
Example:
Core Specification Parameters include:
. Scale . Meter . Goal . Definition . Constraint
Notes:
1. Core specification can be distinguished from ‘commentary’ and ‘back-

ground’ (supporting) specification.
2. Core specification is the ‘meat’ in specifications of requirements,

designs, Evo steps and test cases.
Synonyms: Implementable Specification *633.
Related Concepts: Non-Commentary *294; Background *507; Commen-
tary *632; Specification *137; Specification Quality Control (SQC) *051.

Cost Concept *033
Cost is an expense incurred in building or maintaining a system. It is
consumption of a resource.
Synonyms: Price *033; Expense *033: The degree of consumption, how
much resource was used.
Related Concepts: Resource *199.
Keyed Icon: -|->O
‘‘The keyed icon is a level symbol, ‘|’, set on a resource scale of measure,
‘-->O’.’’
Note: The neutral symbol ‘|’ is chosen to represent the generic cost
concept, rather a currency symbol, because the resources involved are
more than just money. If you want to link the icon to the idea of a cost
range, then think of the chosen symbol as a minus sign, turned 90
degrees.

344 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Example:
---||||||||-->O expresses a cost range.
The keyed icon for Cost [Money] is a currency symbol, default 6 (Euro).

Example:
--6-->O to express a money cost and ----<666666666|¼¼¼¼¼¼>O
to express a cost range.

Credibility Concept *035
Credibility expresses the strength of belief in and hence validity of,
information. Within Impact Estimation, credibility is usually assessed for
the evidence and sources supporting each specific impact estimate.
Credibility is expressed as a numeric value on a range of credibility
ratings from 1.0 (for perfect credibility) to 0.0 (for no credibility at all).
These credibility values can be used to credibility-correct the impact
estimates: each impact estimate is multiplied by its relevant credibility.
Example:
If an impact estimate were 40% and its credibility were 0.5, then the
credibility-adjusted estimate would be 20% (40% multiplied by 0.5).

Critical Factor Concept *036
A critical factor is a scalar attribute level, a binary attribute or condition
in a system, which can on its own, determine the success or failure of
the system under specified conditions.
Notes:
1. A critical failure factor is usually specified as a constraint level (for example

a ‘Fail’ or ‘Survival’ level), or as a binary constraint (‘Constraint’).
2. A critical success factor is usually specified as a target level (a ‘Goal’ or

‘Budget’ level), or as a binary target (‘Target’).
Related Concepts: Critical Success Factor *418; Critical Failure Factor *025.

DDP Concept *041
Acronym for Defect Detection Process *041

Defect Detection Process Concept *041
The Defect Detection Process (DDP) is part of Specification Quality
Control (SQC), which also includes the Defect Prevention Process
(DPP). It is the systematic, project-focused process of identifying
specification defects.
Source: A detailed description of the DDP process can be found in (Gilb
and Graham 1993) and (Wheeler, Brykcznski and Meeson 1996).
Rationale: This is to avoid the high cost of late defect removal (at test, or in
field), or to avoid the high cost of the consequences of malfunctions caused
by the defect: ‘‘A stitch in time saves nine.’’
Notes:
1. The DDP is ‘project oriented’ in that it is primarily concerned with a

project’s economics, rather than an organization’s work process eco-
nomics (that is the DPP concern).

2. DDP is not itself concerned with process improvement, but it provides
a stream of data, concrete defect examples, and a working environment
that can be used to feed into, and to help analyze effects of, a Defect
Prevention Process.

Planguage Concept Glossary 345

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Acronym: DDP *041.
Related Concepts: Specification Quality Control (SQC) *051; Defect
Prevention Process (DPP) *042.

Defect Prevention Process Concept *042
The Defect Prevention Process (DPP) is a specific IBM-originated
process of continuous process improvement. It is part of Specification
Quality Control (SQC).
Notes:
1. The DPP process works towards continuous process improvement for

ongoing, and especially future, projects in a larger organization. It is
fed suggestions, and data, on problems, from the Defect Detection
Process (DDP), and from other defect-identification sources, like
testing and customer feedback.

‘‘An ounce of prevention is worth a pound of cure.’’

2. As reported by IBM, in organizations of 100 to 1,000 people, about
200 to 1,000 process changes may be implemented annually. On
initial DPP implementation (the first project), 50% of the total
number of historical defects may be eliminated in the first year of
use and 70% eliminated within 2–3 years.

Sources:
. Inspired by classical Statistical Process Control ideas (Deming 1986), the
Defect Prevention Process (DPP) was developed and refined (from 1983
onwards) by Carole Jones and Robert Mays of IBM Research Triangle
Park NC with the aim of improving IBM’s processes for software
engineering, hardware engineering and administration (Mays 1995).

. A detailed description of DPP can be found in (Gilb and Graham 1993
Chapters 7 and 17).

. DPP was the direct inspiration for IBM assessment process Level 5 (Ron
Radice cited in Mays 1995), US DoD Software Engineering Institute’s
Capability Maturity Model, CMM Level 5, and CMMI Level 5.

Acronym: DPP *042.
Related Concepts: Plan-Do-Study-Act Cycle (PDSA) *168; Specification
Quality Control (SQC) *051; Defect Detection Process (DDP) *041;
Continuous Process Improvement *424; Process Improvement *114;
Process Improvement Suggestion *088; Process Meeting *119; Process
Change Management Team *118.

Definition Concept *044
‘Definition’ or ‘Defined As’ is a parameter that is used to define a
tagged term.
Notes:
1. The tagged term could then be re-used anywhere else within scope,

and would always have this precise definition.
2. Any tagged statement is, in practice, a definition of that tag, so the use

of the ‘Defined’ parameter is to make it explicit that the statement is
intended as a reusable definition.
Example:
Trained: Defined As: At least 30 hours classroom, and ‘passed’ prac-
tical exam.
Trained: At least 30 hours classroom, and ‘passed’ practical examination.

346 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Trained: Def: At least 30 hours classroom, and ‘passed’ practical
examination.
Trained: Definition: At least 30 hours classroom, and ‘passed’ practical
examination.
Trained¼At least 30 hours classroom, and ‘passed’ practical examination.
Equivalent definitions of the term, ‘Trained.’

Example:
Reliability:
Scale: Hours to <complete> defined [Task: Default¼Most Complex
Task].
Fail [USA]: 5 hours. ‘‘Most Complex Task is suitable default for a Fail
specification.’’
Goal [Europe, End Next Year]: 10 hours.
Most Complex Task: Defined As: The work task, which normally
takes most employees longest clock time to complete on average.

Abbreviations: Def *044.
Synonyms: Defined *044; Defined As *044.
Keyed Icons: : or¼ ‘‘Whatever follows the icon symbol is a definition of the
tag or parameter to the left of the symbol. ‘¼’ is less commonly used.’’

Dependency Concept *189
A ‘dependency’ is a reliance of some kind, of one set of components
on another set of components.
Notes:
1. Any given component can be part of numerous dependencies (either

having one or more dependencies, and/or having one or more depen-
dencies placed on it).

2. The reliance involved in a dependency can be of many kinds. For example,
there can be dependency for operation, for success, or for failure avoidance.

3. Qualifiers specify implied dependencies.
4. The parameter, ‘Dependency,’ or its synonym, ‘Depends On,’ is used

to explicitly specify a dependency.
Example:
Z [T]: YY. ‘‘Only if T is true, does Z have a value of YY.’’
A: Depends On: B. ‘‘If B is not true then A is not true.’’
Tag A:
Dependency: XX. ‘‘Tag A has a dependency on XX.’’

Example:
Goal [Contract Beta]: 60%.
This means that the Goal level requirement of ‘60%’ is valid as a Goal if,
and only if, ‘Contract Beta’ is ‘in force.’ The Goal has an implied
dependency on the qualifier, ‘Contract Beta.’

Example:
Dependency: The satellite must be operational for the phone to
operate. <- Catherine.

Example:
Dependency XX: Design Idea XX -> Reliability [USA, If Patent PP].
Example of dependency of an objective (Reliability [USA]), on both a design
idea (Design Idea XX) and a condition (Patent PP). Note: -> ¼ ‘Impacts’.

Planguage Concept Glossary 347

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

This is a ‘weak’ dependency statement because we have no specification of
whether the dependency is trivial or critical in degree. A numeric impact
estimate could be used to give us that information, later, if we wanted it.

Example:
Tag: Refugee Transport.
Type: Function.
Description: Moving refugees back to home villages.
Source: Charity Aid Manual [March, Last Year].
Depends On: The mode of transport will be determined by safety and
cost factors.
Or the equivalent:
Dependency: The mode of transport will be determined by safety and
cost factors.

Example:
Contract Beta: Depends On: Conglomerate Corp [Our Customer, USA].
This means that if ‘Conglomerate Corp [Our Customer, USA]’ is not true,
then ‘Contract Beta’ is not ‘true.’

Rationale: To promote awareness of relationships, ensure more realistic
planning, and provide the ability to identify reliance, and therefore cope
with any associated risks.
Synonyms: Depends On *189.
Related Concepts: Before *312; After *313; Impacts *334; Is Impacted
By *412.

Description Concept *416
A description is a set of words and/or diagrams, which describe, and
partially define, a component.
The parameter ‘Description’ is used to specify description.
Notes:
1. A description will convey the essence of a concept, or of a specification,

but the full definition of the element may well require many other
parameters to define it fully (from all interesting viewpoints), includ-
ing implied or inherited definitions from other system components.

2. Models, real systems and prototypes can also provide a form of
‘description.’
Example:
Mechanical Power:
Type: Function.
Assumption: At least 100 horsepower.
Constraint: Product Cost is lower than 6500.
Risk: Last of European Commission Development Funding.
Version: March 1, This Year.
Description: The mechanical component that will provide all mechan-
ical power to the system.
Note that the function description is only one part of the full function
definition of ‘Mechanical Power.’

Design Constraint Concept *181
A design constraint is an explicit and direct restriction regarding the
choice of design ideas. It either declares a design idea to be

348 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

compulsory (Mandatory Design) or to be excluded (Prohibited
Design).
Design constraints are dictated from an earlier system
development stage (a higher level or a more specialized level). For
example, the system architects pass on a number of design
constraints, within the architecture specifications, to the system
engineers.
A design constraint is a binary requirement. It can be a generic
constraint or involve specific design(s).
Example:
=================== Prohibited Designs ===================
P1: Constraint: Products and Services of direct competitors shall be avoided.
P2: Constraint: No software product version shall be released for sale
until at least 3 month field trial has completed reporting no major faults
outstanding <- Technical Director’s Policy 6.9.
P3: Constraint [Europe]: No goods will be shipped without advance
payment or bank guarantee.
=================== Mandatory Designs ==================
M1: Constraint: Resident Workers in Country of Export shall be used
wherever possible.
M2: Constraint [IT Projects, In House]: Commercial Off The Shelf
Software shall be used exclusively.
M3: Constraint: Products and Services from Our Corporation, Our
Customers and Partners are preferred <- Corporate Policy 5.4.
M4: Constraint [Programming]: Use Java as Programming Language.
Notes:
1. Some people use the term ‘Design Constraint’ to mean anything that

constrains the choice of design. However, within Planguage the term is
more restricted. It is a direct constraint on design ideas themselves;
directly referring to design ideas, generically or specifically. All other
types of requirements ‘constrain’ our choice of design, but not as
directly as a design constraint.
Indirect Constraints:
. A Resource Constraint determines resource, and so impacts optional
design.

. A Performance Constraint determines performance, and so impacts
optional design.

. A Function Constraint determines function, and so impacts optional
design.

. A Condition Constraint determines conditions, and so impacts
optional design.

Direct Constraints:
. Design Constraints determine design directly, by specifying a man-
datory design or a prohibited design.
All requirement types: targets and constraints – have some potential
effect on our design choices. But, design constraints are ‘direct’ in the
sense that they make specific design decisions.
Example:
Spruce Goose:
Type: Generic Design Constraint.
Definition [If Wartime]: A troop transport plane may not use scarce
<metal alloys>.

Planguage Concept Glossary 349

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Howard Hughes’ airplane, ‘The Spruce Goose,’ had this design con-
straint before the end of the Second World War. He made the plane
largely of ‘spruce’ wood.

2. Only designs that are ‘design constraints’ should be allowed within
requirement specifications. All optional design ideas, designs you can
swap out if you find a better one, should be specified in design
specifications. This is so that each level of design responsibility knows
what it is free to do, and not free to do.

Synonyms: Architectural Constraint *181; Design Restriction *181;
Constrained Design: Informal Use; Required Design: Informal Use;
Solution Constraint: Informal Use.
Related Concepts: Constraint *218; Requirement *026; Design Idea
*047; Condition Constraint *498.

Design Engineering Concept *501
Design Engineering is an iterative process of determining a set of
designs, with rigorous attention to quantified and measurable control
of their impact on requirements.
The design engineering process implies the matching of potential and
specified design ideas with quantified performance requirements,
quantified resource requirements, and defined design and condition
constraints.
Notes:
1. Planguage involves design engineering. By contrast, conventional ‘design’

activity (the kind of ‘design’ often found in the literature and in practice)
usually has a less systematic, less quantified process, using perhaps intui-
tion, tradition, and more trial and error, to determine satisfactory tech-
nology and to determine stakeholder satisfaction. It is characterized by
naming objectives (for example, ‘better usability’), and naming designs
(for example, ‘single standard interface’), but not following up with
quantified versions (that is, providing the information captured in Plan-
guage, using such parameters as Scale, Goal, Impact Estimate andMeter).

Related Concepts: Design Process *046; Architecture Engineering *499;
Systems Engineering *223; Engineering *224.

Design Idea Concept *047
A design idea is anything that will satisfy some requirements. A set of
design ideas is usually needed to solve a ‘design problem.’
Notes:
1. A design idea is not usually a requirement. However, a design idea can

be a requirement if it is a design constraint. That is, a specific design is
stated as mandatory or prohibited in the requirements.

2. Requirements are inputs into a design process; design ideas are the
outputs.

3. A design idea can, in principle, be changed at any time for a ‘better’ design
idea (without having to ask the permission of any stakeholders because the
system designers are responsible for the proposed design ideas). A ‘better’
designmeets the requirements by givingmore performance and/or less cost.

4. A satisfactory design idea can have some negative performance scalar
impacts, and still be acceptable overall. As long as the negative impacts
(negative side effects) of a design idea do not prevent us from reaching
all the required target levels, the design idea can be used.

350 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

5. A design specification is a written definition of a specific design idea.
(See also the design specification template.)

Synonyms: Design *047; Strategy *047; Proposed Solution *047; Means
*047.
Related Concepts: Architecture *192; Policy *111; Design Constraint
*181; Design Specification *586; Design Problem *048.
Drawn Icon: A lying-down rectangle. (The standing rectangle is a docu-
ment icon.)

Design Process Concept *046
The design process is the act of searching for, specifying, evaluating
and selecting design ideas, in an attempt to satisfy specified
stakeholder requirements.
Design is finding a set of solutions (design ideas) for a set of defined
requirements.
Overview of the Design Process:
. Analyze the Requirements
. Find and Specify Design Ideas
. Evaluate the Design Ideas
. Select Design Ideas and Produce Evo Plan
Design can be carried out in several ways. It can be based on tradition,
on intuition, on dogma, on principles or heuristics. It can also be based
on multidimensional quantified logic – this latter we would call
‘engineering’ or ‘systems engineering.’

‘‘ Design comes about entirely from the playing out of the evolutionary
algorithm.’’ <-Susan Blackmore.1

Related Concepts: Design Engineering *501; Systems Engineering *223;
Engineering *224.

Design Specification Concept *586
A design specification is the written specification of a design idea. A set
of design specifications is the main output of a design engineering
process. A specific set of design specifications, when implemented,
will, to some degree, meet the stated requirements.
Notes:
1. A set of design specifications attempts to solve a design problem.

Identification and documentation of the individual design ideas, and
their potential contribution towards meeting the requirements, helps
selection of the ‘best’ design ideas for implementation.

Figure G5
The drawn icon for a Design Idea *047.

1 Blackmore, Susan, The Meme Machine, Oxford: Oxford Paperbacks, 2000, ISBN:
019286212X. See Page 205.

Planguage Concept Glossary 351

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

2. The design engineering process uses the requirement specification as
input. The design engineering process output is a set of design (solu-
tion) specifications (of design ideas).

3. See the design specification template for details of the required speci-
fication data.

4. The design specifications might contain information about the expected
attributes of the designs for meeting requirements. This ‘expected
attributes’ information of a design specification might be in the form
of an Impact Estimation table or, it can be as simple as an assertion of
impacts on requirements, referenced by their tags (see example below).
Example:
Engineer Motivation:
Gist: Motivate, using free time off.
Type: Design Idea.
Impacts [Objectives]: {Engineering Productivity, Engineering Costs}.
Impacts [Costs]: {Staff Costs, Available Engineering Hours}.
Definition: Offer all Engineers up to 20% of their Normal Working
Hours per year as discretionary time off to invest in Health, Family
and Knowledge {Studies, Write Papers, Go to Conferences}.
Source: Productivity Committee Report 1.4.3.
Implementor: Human Resources Director.

Template: Design Specification Template.
Abbreviations: Design Spec *586.
Synonyms: Technical Design: Informal use; ‘The Design’: Informal use.
Related Concepts: Design Engineering *501; Design Idea *047; Systems
Architecture *564; Architecture *192; Architecture Specification *617;
Specification *137.

Deviation Concept *475
Deviation is the amount (estimated or actual) by which some attribute
differs from some specific benchmark or target. Deviation is usually
expressed numerically using either absolute or percentage difference.
Synonyms: Variance *475.
Keyed Icon: $

DPP Concept *042
Acronym for Defect Prevention Process *042

Due Concept *554
‘Due’ is a parameter indicating when some aspect of a specification is
due.
Example:
Due [Sample A]: End of January Next Year <- Contract Section 3.5.6
[Supplier X].
Synonyms: Deadline *554; Due Date *554.
Historical Note: The idea of ‘Due’ as a parameter was from an unpublished
note by Jens Weber, Daimler Chrysler, Frankfurt.

During Concept *314
‘During’ is used when specifying events (including Evo steps and tasks)
to indicate a time dependency for events that must be carried out
concurrently (that is, done in parallel).

352 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Example:
Step 33: Step: {A During B During C}. ‘‘Do A, B and C concurrently.’’

Elementary Concept *055
An ‘elementary’ component is not decomposed into sub-components.
Notes:
1. A component can be elementary because it is unable to be decomposed into

sub-components, or because there is no declared intent to decompose it.
2. The decision to subdivide a complex concept into elementary concepts

is a practical and economic matter. It depends on:
. the size and complexity of a project
. the need for precise control over system attributes
. the risks taken if specification detail is inadequate
. engineering culture
. intellectual ability to decompose
. other factors.
Even when an initial decision is made about having no further decom-
position of an idea, later events and opportunities, or later more
detailed phases of systems engineering, may cause a concept to be
decomposed into elementary concepts.
The reverse can be true too. Initial decomposition may seem unneces-
sarily detailed or unnecessarily constraining. So, the concept may be
simplified from a complex concept back to an elementary concept.

3. The essential characteristic of scalar attributes, which tells us if they are
elementary, is the number of defined scales of measure. There is only
one distinct Scale for each elementary concept.

4. Elementary concepts are directly measurable or testable. You can only
test or measure a complex concept by way of testing and measuring the
set of its elementary concepts. A complex concept is not the ‘sum,’ but
the ‘set’ of its elementary concepts.

5. Normally an elementary statement can have its own distinct ‘tag,’ and
can be treated (developed, tested, costed, quality controlled) relatively
independently of any other elementary statement.

Related Concepts: Complex *021.

Error Concept *274
An ‘error’ is something done incorrectly by a human being.
Notes:
1. Errors are usually committed unintentionally; they are often forced to

happen by ‘bad’ work processes (Statistical Process Control Theory
(Deming 1986; Juran 1964; 1974)).

2. Human errors in specification processes lead to defects in specification or
evaluations. For example, errors in systems engineering processes result in
(written) engineering and contractual specification defects. In turn, speci-
fication defects result in faults in the system, which may or may not, result
in system malfunctions (the fault actually occurs). See related concepts.

Error/Slip (Specification
Issue) MalfunctionFault/Bug/

System Defect
Specification

Defect

Figure G6

Planguage Concept Glossary 353

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

3. SQC is a means of checking specifications to discover whether errors
have been made. Any suspected violation of any applicable specifica-
tion rule is logged as an issue.

‘‘ To err is human.’’
Saying, and similar to Plutarch (AD 46–120) ‘‘ For to err in opinion, though
it be not part of wise men, is at least human’’.

Synonyms: Slip *274.
Related Concepts: Specification Issue *529; Specification Defect *043;
Fault *339; Malfunction *275.

Estimate Concept *058
Anestimate is anumeric judgmentabouta future, presentorpast level of a
scalar system attribute. (This includes all performance and cost attributes.)
Notes:
1. Estimates are usually made where direct measurement is:

. impossible (future), or

. impractical (past), or

. uneconomic (current levels).
2. An estimate is usually extrapolated from available information, and

past experience.
3. An estimate can be made for numeric facts from the past (benchmarks),

even if precise past data is not available.
4. Estimates are made about any scalar system attribute: cost levels, resource

availability, quality levels, savings and other dimensions of systems.

Estimate, To Concept *059
In Planguage, to ‘estimate’ is:
The process of arriving at a judgment by guessing the probable
numeric value of a numeric attribute level using other methods than
immediate measurement.

Estimate: ‘‘to judge or determine generally but carefully (size, value, cost,
requirements, etc.); calculate approximately.’’

Webster’s New World Dictionary

Estimation is not to be confused with Quantification or Measurement.
(See figure in concept, ‘Quantify, To *385’.)
Related Concepts: Estimate *058; Quantify, To *385; Specify, To *239;
Measure, To *386.

Event Concept *062
An event is a specified occurrence.
Example:
. President Inaugurated
. Process Begun
. Process Ended
. Task Started
. Task Interrupted
. Contract Signed
Notes:
1. ‘Event’ is not used here in the ‘organized occasion’ sense of the term. In

other words, it is not used in the sense of a ‘wedding’ or a ‘gala opening
of a building’ being an ‘event.’

354 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

2. An event is not the ‘carrying out’ of an activity, such as performing a
task, a process, or some systems engineering implementation (like
implementing an Evo step).

3. An event must be clearly distinguishable from the non-occurrence
of the event. It must be reliably observable, testable or measurable in
the real world. Consequently, events must be precisely defined –
unambiguously.
However, the occurrence of an event is not the same as our measure-
ment of it. An event occurs whether or not it is immediately detected
or measured.

4. An event usually results in some measurable change in a status. If a
specific event has occurred, then any status associated with the event
will have changed. By evaluating the relevant event condition, the
setting of a status can be determined.

5. An ‘event condition’ can be defined as a qualifier condition – the event
must have happened for the qualifier condition to be true.
Example:
Goal [First Sale]: 9% Or Better.
First Sale: Event: We make our first sale of refrigerators to the USA.
Past [Last Year, Europe, First Flight]: 98%.
First Flight: Type: Event. Description: Successful first flight<officially
logged>.

6. To attempt a more detailed definition:2 An event is an occurrence (a
set of circumstances, which include changes in status), localized in
space and time, which results from some activity and which is sig-
nificant as an indicator of progress or as a stimulus (acts as a trigger) for
other activity.

7. An event can be defined in time and space (theory of relativity), but it can
be conceived of, specified and defined without time and space coordinates.

Synonyms: Happening; Occurrence; Point (in space-time).
Related Concepts: Qualifier *124; Condition *024; Status *174.

Evidence Concept *063
Evidence is the historic facts, which support an assertion. The evidence
usually will have been the basis for making an assertion.
In Impact Estimation, evidence is required for each impact estimate.
Where there is no evidence, it should be clearly stated that there is none.
Example:
Design B -> Goal 1.
Scale Impact: 10 minutes.
Evidence: Of 100 surveyed Customers last year, 30 agreed there was this
level of impact on Goal 1 <- Marketing Report A123.

Evo Concept *355
Abbreviation for Evolutionary Project Management *355 and Evolution-
ary *196.
Readers will have to bear with me that I use this abbreviation for both
‘Evolutionary Project Management’ and ‘Evolutionary.’ The underlying
concept is the same <-TG.

2 With thanks to Don Mills, New Zealand.

Planguage Concept Glossary 355

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Evo Plan Concept *322
An Evo plan is a set of sequenced and/or a set of yet-to-be sequenced
Evo steps. The current planned sequence of delivery of any of the steps
should be reconsidered after each Evo step has actually been
delivered and the feedback has been analyzed. Many factors,
internal and external, can cause a re-sequencing of steps and/or the
insertion of previously unplanned additional step(s) and/or the deletion
of some step(s).
It is the identification of the next Evo step for delivery that should be our
focus for detailed practical planning. After all, at an extreme, the other
planned steps may never be implemented in practice.
Notes:
1. For the Evo steps, an Evo plan is likely to specify only the tag names.

Detailed specification of an Evo step will be held in its step specifica-
tion.

2. An Impact Estimation table may be included in an Evo plan. Such a
table would hold the estimates for the impacts of each of the Evo steps,
and the feedback after delivery of each of the Evo steps. The progress
made could then be tracked against the Evo plan estimates.

Synonyms: Evolutionary Plan *322; Evolutionary Delivery Plan *322.
Related Concepts: Evolutionary Project Management (Evo) *355; Evolu-
tionary *196.
Drawn Icon: A series of any number of steps, each one representing an
Evo step.

Evo Step Concept *141
An Evo step (‘evolutionary step’ or simply ‘step’) is a ‘package of
change,’ containing a set of design ideas that on delivery to a system
is intended to help move the system towards meeting the yet-unfulfilled
system requirements.
Evo steps are assumed to be small increments, typically a week in
duration or 2% of total budget. There are two purposes for Evo steps:
to move us towards the long-range requirements, and to learn early
from stakeholder experience (with a view to changing plans and
designs early).
Notes:
1. Evo Step Content: A step will contain the ‘means’ for meeting speci-

fied ‘ends’ (requirements). It will contain some combination of design
ideas, which aim to achieve the requirements.

2. Dynamic Step Sequencing: Evo is conceptually based on the Plan-Do-
Study-Act cycle. An Evo plan for a project consists of a planned series of
Evo steps sequenced in order for delivery. Step sequencing for delivery
can be roughly sketched or planned in actual time sequence. Step

Figure G7
The drawn icon for Evo Plan *322 consisting of several Evo Steps *141.

356 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

sequencing always remains finally contingent upon actual feedback
results, and on external considerations such as new requirements, chan-
ging priorities or new technology. The step delivery sequence is deter-
mined dynamically, after the previous step results are analyzed (Study
Phase) and a decision is made about the next step (Act Phase). Selecting
the next step for delivery is the main focus of Evo planning activity.

3. Step Priority: Steps with the highest stakeholder value to cost ratios or
performance to cost ratios ought to be scheduled for early delivery.
Step dependencies have also to be considered.

4. Step Size: A step is typically, but not unconditionally, constrained to
be between 2% and 5% of a project’s total financial budget and total
elapsed time. Why? Well, because 2% to 5% is a reasonable amount of
resource to gamble, if you are not absolutely sure whether a step will
succeed.

5. Step Specification: An evolutionary step specification is the written
description of the step content; that is, specification of the list of design
ideas involved.

6. Step Lifecycle Location: A step is developed and delivered within a
result cycle: any necessary step development occurs as part of the
development cycle, any step production required occurs as part of
the production cycle, and step delivery takes place as part of the
delivery cycle.

7. Step Content Reuse: It is possible for the same step content to be
repeated in several different steps (that is, in effect a ‘roll-out’ across a
system, over time, such as to different countries or states or branch
offices). In such cases, the step specifications will differ only in the
qualifiers. For example, Step 1: Function XX [California], Step 2:
Function XX [New York], and so on.
Example:
S23: Step [<Time, Place, Event to be determined>]: F1, F2 [Europe],
D3 [China].

8. The main difference between an Evo step package (above example
with undetermined qualifier) and a delivery-specified Evo step is that
the latter has been assigned a sequence or timing and a place of
application qualifier. The Evo step package is just a specification of
the step contents. An Evo step package can be deployed in multiple
times and places. You could say that an Evo step package is a reusable
specification. For example, every week it could be to different
countries.

Design Idea 1
&

Design Idea 2

Design Idea 1
&

Design Idea 2

Design Idea 1
&

Design Idea 2

[First Release,
California]

[Third Release,
Oregon]

Figure G8
Evo Step packaging. Delivery-specified Evo Steps: same underlying step specification, but
two different times and places.

Planguage Concept Glossary 357

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Synonyms: Step *141; Evolutionary Step *141; Build, Increment, Install-
ment, Release: Near synonyms depending on whether there is use of
feedback and dynamic change (Royce 1998).
Related Concepts: Evo Step Specification *370; Evo Plan *322; Evolu-
tionary *196; Evolutionary Project Management (Evo) *355; PDSA
Cycle *168: See also the individual Plan, Do, Study, Act components;
Result Cycle *122; Development Cycle *413; Production Cycle *407;
Delivery Cycle *049; Result *130: Synonym is Step Result.
Keyed Icon: ->J or ->:) ‘‘Symbolizing ‘Impact’ on stakeholder. The J
symbol is sometimes automatic ‘correction’ for the colon and right
parenthesis keyed symbols, in Microsoft Word.’’

Evolutionary Concept *196
The ‘evolutionary’ concept implies association with Evolutionary Project
Management; an iterative process of change, feedback, learning and
consequent change. Evolutionary processes needs to be carefully
distinguished from other processes – those that do not iterate, do not
learn from experience, and do not cater for change.
Abbreviation: Evo *196.
Related Concepts: Evolutionary Project Management *355; Evo Plan
*322; Evo Step *141; Plan-Do-Study-Act Cycle *168.

Evolutionary Project Management Concept *355
A project management process delivering evolutionary ‘high-value-
first’ progress towards the desired goals, and seeking to obtain, and
use, realistic, early feedback.
Key components include:
. frequent delivery of system changes (steps)
. steps delivered to stakeholders for real use
. feedback obtained from stakeholders to determine next step(s)
. the existing system is used as the initial system base
. small steps (ideally between 2%–5% of total project financial cost and time)
. steps with highest value and benefit to cost ratios given highest priority
for delivery

. feedback used ‘immediately’ to modify future plans and requirements
and, also to decide on the next step

. total systems approach (‘anything that helps’)

. results-orientation (‘delivering the results’ is prime concern).
Description: Chapter 10, ‘‘Evolutionary Project Management: How to
Manage Project Benefits and Costs’’.
Abbreviation: Evo *355.
Synonyms: Evo Management *355; Evolutionary Delivery Management
*355; Rapid Delivery Management (Acronym: RDM), Result Delivery
(These synonyms are used within Jet Propulsion Labs. (Spuck 1993);
Synch-and-stabilize or Milestone Approach (These synonyms are used
within Microsoft (Cusumano and Selby 1995); None of them are perfect
synonyms, but since each author and company has a long list of extremely
similar features that make up these processes, they are close enough.
Historical Note: Evolutionary Project Management had an early large-scale
documented use in the Cleanroom techniques used by Harlan Mills within
IBM in the 1970s (Mills 1980). Larman and Basili (2003) gives a compre-
hensive history of the method.

358 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Except Concept *389
‘Except’ is used to specify that the following term or expression is an
exception from the previous term or expression.
Example:
Goal [Europe Except {Denmark, France, Luxembourg}]: 20%.

Fail Concept *098
‘Failure’ signals an undesirable and unacceptable system state. A Fail
level specifies a point at which a system or attribute failure state begins.
A single specified number (like Fail: 90%) is the leading edge of a Failure
Range.
A Fail parameter is used to specify a Fail level constraint; it sets up a
failure condition.
Notes:
1. Failure ranges can be arbitrarily stipulated by a stakeholder. They

might be stated in a contract. They are specified so as to keep
designers and implementers aware of the levels at which stakeholders
are likely to experience failure, or to contractually declare some
degree of failure.

2. A failure range maps an extent of unacceptable levels. The failure range
is better than ‘catastrophic’ levels, and worse than ‘acceptable’ levels. In
other words, the failure range extends from the defined Fail level in the
direction of ‘worse’ until a Survival level (or Catastrophe level) is
reached.

3. The purpose of the ‘Fail’ concept is to inform us that we need both to
design for, and operate at, more acceptable levels.
Example:
Fail [Euro Release]: 99.5%.
For example, a state of failure can result from issues such as safety
problems, operator discomfort, customer discomfort, loss of value, and
loss of market share. Failure levels cause problems, even temporary
system loss, but they are not immediately critical to a system’s con-
tinued survival. The assumption is that it is possible to get the system
out of a failure range.

4. Fail levels do not represent total failure. That role is defined by catastrophe
levels. However, system development should keep going until, at least, the
actual system levels are better than the specified failure levels. Otherwise,
they are delivering some degree of failure to some stakeholder; that is, the
system or attribute will at some stage fail in some sense.

5. A Fail constraint specification means that some defined stakeholder has
stated the level at which the attribute’s numeric value becomes unac-
ceptable to them. Any level equal to or worse than the Fail level, is
outside the ‘acceptable’ range for that stakeholder.

6. A systems engineer should document why a specific Fail level was
chosen (using Rationale or similar), and the likely impacts (using
Impacts) and consequences of any failure (using Risks), so that risk
analysis and prioritization can be carried out.
Example:
Learning Time:
Scale: Mean Time to Learn defined [Task] by defined [Operator].
Fail [Outgoing Call, Beginner]: 3 minutes <- Marketing Requirement
3.4.5.

Planguage Concept Glossary 359

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Risk: If the Mean Time is not lower, then Competitor Products will be
perceived as better and we will lose <market share> <- Marketing
Planner [Andersen].
Fail [Address List Update, Professional User]: 30 seconds <- Market-
ing Requirement 3.4.6.
Authority: External Consultants. ‘‘Outside consultants tell us we will
be rated badly if we fail to beat this level.’’
Goal [Average Task, Average User]: 25 seconds <- Marketing
Requirement 3.4.7.
Rationale: Marketing believes this will make us best in the Market.
The local parameters, Risk, Authority and Rationale can be used to explain
why scalar levels have been set at specific levels. Note that the Source(s) of
information (format: ‘B <- Source of B’) give indirect authority for the
specification levels. (The Goal specification is included here to give a more
realistic specification example.)

Synonyms: Fail Level *098; Fail Limit *098; Failure Level *098; Failure
*098; Warning *098; Must (Avoid) *098: Historical usage only.
Related Concepts: Survival *440; Catastrophe *602; Range *552: See
‘Failure Range’; Must Do *539: Historical usage only.
Keyed Icon: ! ‘‘In context on scalar arrows: ---!--->O---!--->
A Failure Range would use multiple Fail icons: ----!!!!!!--->-> ’’

Frontroom Concept *343
Frontroom is an adjective or noun, referring to a conceptual place,
used to describe any project management processes or activities, in
Evo, that are visible to the Evo step recipients.
Notes:
1. Typically, ‘frontroom’ is used to refer to the delivery cycle part of the

result cycle. The frontroom is where the step is delivered to the
stakeholders.

2. The frontroom is where stakeholder-level results of the step integration
can be tested and measured.

Related Concepts: Backroom *342.

Function Concept *069
A function is ‘what’ a system does.
A function is a binary concept, and is always expressed in action
(‘to do’) terms (for example, ‘to span a gap’ and ‘to manage a
process’).
Notes:
1. A function has a corresponding implied purpose. For example ‘to span

a gap’ usually has as an implied purpose to enable something to get
from point A to point B over the gap.

2. Function is a fundamental part of a system description: a system
consists of function attributes, performance attributes, resource (cost)
attributes and design attributes. All attributes exist with respect to
defined specified conditions.

3. All the system attributes must be described together, in order to fully
understand a real world system. Function is a ‘pure’ concept, which
cannot exist in the real world alone. Functions need to have associated
with them, the relevant performance and resource attributes.

360 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Further, functions can only exist and successfully interact with the real
world if they have certain minimal levels of such attributes, for exam-
ple, levels of availability.

4. Function is a system attribute that is expressed without regard to the related
performance, cost and design. A function needs to be clearly distinguished
from design ideas. Design ideas are a real world method for delivering all
the function, performance and cost attributes of a system.

5. Function itself is binary. Function in a system is either implemented or
not. It can be tested as present or not. Any real implemented function
will have some associated performance and cost attributes – whether
we planned for them or not. Once a design with the required func-
tionality is specified (or later implemented), we need to consider
whether that particular design has satisfactory performance and
resource (cost) attributes. In other words, we control these scalar
attribute’s levels mainly by specifying appropriate design options,
which deliver the required performance and cost levels.

6. A function can often be decomposed into a hierarchical set of sub-
functions. For specification clarity, prefixes such as ‘sub-’, ‘supra-’ or
‘family’ relationships (such as kid, parent, sibling) can be used to
express the relationships amongst the different functions. Alternatively,
the parameters, Includes, Is Part Of and Consists Of can be used.

7. I have intentionally chosen the term ‘function’ as the adjective for
‘function’ (for example, in ‘function specification’ and ‘function
requirement’), rather than the more common ‘functional.’ It is the
‘requirement for function’ that is being expressed, rather than ‘making
the requirements functional.’ The logic of this choice is the same as for
choosing ‘quality’ (for example, in ‘quality requirements), rather than
‘qualitative.’

Related Concepts: Attribute *003; Design Idea *047; Mission *097;
Function Design *521.
Drawn Icon: An oval (a circle would also be considered a function.)
Keyed Icon: O or parentheses, () ‘‘In context: ------->O------> This
describes a system: the function keyed icon, ‘O,’ is combined with two
scalar arrows representing scales of measure for cost and performance
attributes. Alternatively: ----->(<function tag>)----> ’’

Function Constraint Concept *469
A function constraint is a requirement, which places a restriction on the
functionality that may exist in a system.
A function constraint is binary: it specifies that a specific function must
be, or must not be, present. The implication is that some kind of failure
will result if a function constraint is not met (such as contract penalties).
Example:
No New Games:
Type: Function Constraint.

Function

Figure G9
The drawn icon for Function *069.

Planguage Concept Glossary 361

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Rationale: No new games of any kind will be available on the new
product.
Definition: No functionality required solely for a New Game is to be
developed.
Support for Old Games [Release 1]:
Type: Function Constraint.
Rationale: All available games from our older product will be available to
any customer on request. Some customers would be upset at losing the
existing games.
Definition: Functionality to support Old Games must be included.
Related Concepts: Function *069; Function Target *420; Requirement
*026.

Function Design Concept *521
Function design is a design primarily aimed at satisfying specified
function requirements. A specified function design has two
characteristics, which we primarily select it for:
. function requirement satisfaction, and
. satisfactory consequent levels of performance and cost attributes.
Example:
Cross River:
Type: Function Requirement.
Definition: Move people and goods from one shore to the opposite
shore of a river.
Function Design Ideas [Version 1]: {Build a Bridge, Use a Boat,
Swim Over ‘‘minimal design,’’ Take Route ‘Around’ the River, Fly
Over}.
Consideration of potential design ideas: Function Design Ideas [Version 1]
shows selecting on function satisfaction: some function designs, which satisfy
the function requirement.

Example:
Function Design Ideas [Version 2]: {{Build a Bridge and/or Use a Boat},
Not {Swim Over, Take Route ‘Around’ the River or Fly Over}}.
Function Design Ideas [Version 2] shows further selection using knowledge
of performance and resource (cost) attributes: The function designs that look
most promising for the system.
Notes:
1. The final real performance and cost levels delivered is dependent on

the specific design chosen (for example, exactly what specific design of
bridge, or specific type of boat).
Functional design necessarily narrows the remaining design scope to
some degree. It can even narrow the design scope to a set of function
designs without actually taking a final choice of specific design (for
example, Build a Bridge and/or Use a Boat – without yet saying exactly
which type). The final design specification would then be left to a
downstream design process.
This delay might be justified by their more specialized knowledge
downstream, or justified by the advantage of putting off the decision
due to changed technology/market conditions/costs, or due to an
advantage of making the decision in the context of many other sys-
tem/project-wide decisions (avoiding sub-optimization).

362 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

2. Any function design in its real implementation (as opposed to pure
function specification) will impact many of our non-function require-
ments (performance requirements, resource (cost) requirements, con-
dition constraints or design constraints). This multiple impact is
inevitable whether we like it or not. We cannot, it seems, only design
for one pure requirement dimension without having some effects on
the others.
When a design is primarily specified for non-function purposes (like
improving a quality level), it might inadvertently impact existing
functionality as a side effect. This might possibly be acceptable. It
might introduce new function, modify old function or make existing
function inaccessible totally or practically.

3. The key reasons for considering function design, as a distinct design
type, is that:
. you can narrow the function design scope gradually
. you become more conscious of the side effects on performance and
cost

. you become more conscious of the necessity of choosing function
design alternatives on the basis of their impacts on performance and
cost.

. you can separate the design rationale for the function, from con-
sideration of the other attributes.

Related Concepts: Function *069; Function Requirement *074; Design
Process *046; Design Specification *586.

Function Requirement Concept *074
A function requirement specifies that the presence or absence of a
defined function is required.
A function requirement is binary, and can either be a specific function
target or a generic function constraint.
Example:
Voice Recognition:
Type: Function Requirement.
Definition: The ability to recognize a human voice in terms of vocabu-
lary and individual voiceprints.
Step 1: Step: Voice Recognition [Europe, If Company C has this
function on the market].
Voice Recognition is defined as a function. It is then ‘required’ to be
delivered in Evo step ‘Step 1,’ only in ‘Europe’ and only if ‘Company C
has this function on the market.’ A specific design to implement Voice
Recognition needs to be specified.
Notes:
1. Do not include technical design ideas in function requirements.

Designs are quite different from functions. If designs are mandatory,
then they should be specified as design constraints. A function is an
abstract concept specifying activity of some kind, which is implemen-
ted by a design. For example: An accounting application (a design)
provides a solution to support Maintaining Accountancy Information
(a defined function).

2. Distinction should be made between a function target and a function
constraint. A function constraint implies that a function must be

Planguage Concept Glossary 363

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

present or absent (subject to its qualifier conditions) in a system, or a
penalty of some kind will be incurred.

3. By default, if there is no information that a function requirement is
actually a function constraint, or ‘Type: Function Constraint’ specifi-
cation, a function requirement is assumed to be a function target.

4. To authority levels, which are lower than the one that specified it, a
function target does become mandatory. If a lower authority disagrees
with a requirement they have to take the issue up with the higher authority.

5. A function requirement is satisfied by any design, which meets the
function description. For example, {transport via a bridge, transport by
air, transport across water} all meet the function requirement ‘to transport
people from shore to shore of a river.’ Note, in this example, the designs
are high-level and are actually functions. They can be termed ‘function
designs.’ A lower, more specific level of design {by public transport over a
bridge, by hot-air balloon, by canoe} can also be considered.
At the early rough stages of design, function requirements are best satisfied
by rough function designs (like ‘bridging the river’). At the latter stages of
design, specific designs are better, like ‘rope bridge.’ The issue is that the
more specific a design is, the less freedom of design choice remains, but the
greater the knowledge of its attached performance and resource attributes.
For example, the quality attributes of a software package selected to satisfy
the function requirement, like reliability and portability.

Synonyms: Functional Requirement *074.
Related Concepts Function Target *420; Function Constraint *469;
Function Design *521; Function *069.

Function Target Concept *420
A function target is a specified function requirement. We need to plan
delivery of the function under the specified conditions.
A function target can be contrasted with the other class of function
requirement, a function constraint. A function constraint specifies
mandatory functionality (either a function has to be present or
absent), as a penalty of some kind will result if the constraint is not met.
Example:
Propulsion Capability:
Type: Function Target. ‘‘Could also be termed a Function Require-
ment.’’
Description: A means to mechanically drive the vehicle around in three
dimensions.
Basic definition of a function target.

Example:
Step 22:
Type: Evo Step.
Dependency: Step 23 completed successfully.
Step Content: Propulsion Capability [Version¼Prototype, Capabil-
ity¼ Surface Movement, Means¼Electrical-Powered].
Exploitation of the function target specification by referencing its tag in an
Evo step plan, with suitable qualifiers. Notice how the qualifiers make the
generic function somewhat more specific.
Related Concepts: Function Constraint *469; Function Requirement
*074; Target *048; Function *069.

364 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Fuzzy Concept *080
A specification, which is known to be somewhat unclear, potentially
incorrect or incomplete, is called ‘fuzzy.’ It should be clearly declared
as ‘fuzzy.’
The keyed icons ‘<>’ are used to explicitly mark any fuzzy specifications.
Example:
Scale: <define units of measure>.
Note: This is a template with a hint in fuzzy brackets.
Goal [<Europe>, <2005>]: <66%>.
Rationale: The idea is to avoid forgetting to improve specifications, and
to avoid misleading other people into thinking you have done your
potential best, when you know better should be done, when you have
time and information, in order to define specifications at the necessary
quality level.
Notes:
1. The obligation to mark dubious specifications with fuzzy brackets is

typically adopted as a generic specification rule.
2. In general, a fuzzy term or expression should be enclosed in <fuzzy

brackets>, but alternative notations (such as ‘??’) can also be used.
3. Fuzzy brackets are used in electronic templates to indicate something

to be filled out, and usually to give a hint as to what should be filled
out. See Scale in example above.

4. A fuzzy specification essentially amounts to a declaration by the writer
that the specification is defective at that point.

Keyed Icon: <fuzzy term>

Gap Concept *359
For a scalar attribute, a gap is the range from either:
. an impact estimate, or a specific benchmark (usually the current
level),

. to a specific target (or occasionally, to a specific constraint).
Notes:
1. In general, the larger the gap, then the greater the need to deal with it

(‘the higher the priority’) in order to reach the target or constraint. Of
course, large gaps could be easy and some small gaps could be difficult,
so that is why this paragraph says ‘ in general.’

2. When a gap no longer exists for a specific scalar attribute, then that
attribute ceases to have ‘claim on project resources’ (priority). It then
has no priority.

Related Concepts: Range *552; Design Problem *048.

Gist Concept *157
A Gist parameter is used to state the essence, or main point, of a
specification. A Gist is a summary of the detailed specification.
Notes:
1. A good Gist serves two purposes:

. it helps a planning group to agree on the summary of a specification,
before they spend more time formulating the specification in greater
detail.

. it summarizes a detailed specification. This serves several purposes:
– readers can quickly grasp the subject matter
– readers can decide to avoid the detail

Planguage Concept Glossary 365

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

– presenters can refer to a specification by using just its tag name
and Gist. (A reader who needs more detail can ‘drill down’ to the
detail using the tag name.)

Example:
Gist: All the functions related to transportation of people.

Example:
Software Interfaces:
Type: Architecture.
S: The total set of software interfaces needed for this project.

2. The detailed specification may already exist, or it may be made on the
basis of an agreement about the Gist.

3. When summarizing a scalar specification, use the more specific para-
meter ‘Ambition.’

Synonyms: Summary *157.
Related Concepts: Ambition *423.
Keyed Icon: S ‘‘Greek Summa, mathematical summary symbol.’’

Goal Concept *109
A goal is a primary numeric target level of performance. An implication
of a Goal specification is that there is, or will be, a commitment to
deliver the Goal level (something not true of a Stretch or Wish target
specification). Any commitment is based on a trade-off process,
against other targets, and considering any constraints. The specified
Goal level may need to go through a series of changes, as
circumstances alter and are taken into consideration.
A specified Goal level will reasonably satisfy stakeholders. Going beyond
the goal, at the cost of additional resources, is not considered necessary
or profitable – even though it may have some value to do so.
A Goal parameter is used to specify a performance target for a scalar
attribute.
A Goal level is specified on a defined scale of measure with its relevant
qualifying conditions [time, place, event].
Notes:
1. To reach a Goal level is a success to specific stakeholders. It is also a sort of

‘stop’ signal (a red light) for use of project resources on the specific
performance attribute concerned: although better levels might be reached,
and might be of value to some, they are not called for, under the stated
conditions. For example, the additional value gained, given the estimated
costs, is not viewed as worthwhile. In economic terms, we have at the Goal
level probably reached the point of diminishing return on investment.

2. ‘Goal’ is intentionally not used for resource targets (‘Budget’ is used
instead).

3. I now prefer the term ‘Goal’ instead of my traditional ‘Plan’ parameter.
‘Plan’ refers to so many other elements of planning. If an alternative
were needed for Goal, I would use the more explicit ‘Planned Level.’
Example:
Glory: ‘‘Humpty’s and Alice’s problem, what does ‘glory’ mean?’’
Scale: Number of Literature Citations to a defined [Person’s Work]
during a defined [Time Span].
Goal [Person’s Work¼The Academic, Time Span¼ Each Decade]:
Over 1,000 <- Prof. H G. ‘‘That is glory!’’

366 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Synonyms: Plan *109: Historic usage only; Planned Level *109: Historic
usage only; Goal Level *109: See Level *337; Planned Goal *109.
Related Concepts: Aim *001; Target *048; Stretch *404; Wish *244;
Ideal *328; Objective *100.
Keyed Icon: > ‘‘A single arrowhead, on a performance arrow, pointing
towards the future. It is the same icon as for Budget *480 (which is on a
resource arrow, --->--->O).
In context: O---->---->
Always use an output arrow from a function oval to represent a perfor-
mance attribute. The Goal icon is the ‘>’ on the scalar arrow. If other
scalar levels are shown, the positioning of the tip of the icon symbol
should reflect the Goal level relative to these other levels.’’

Icon Concept *161
In Planguage, an icon is a symbol, that is keyed (Keyed Icon) or drawn
(a Drawn Icon), that represents a concept. All icons are graphic or
pictorial in nature – they should not use words or national languages.
Related Concepts: Keyed Icon *144; Drawn Icon *085; Symbol *161.

IE Concept *283
Acronym for ‘Impact Estimation’.

If Concept *399
‘If’ is a logical operator used in qualifiers to explicitly specify conditions.
Notes:
1. The ‘If ’ is implied for all terms in a qualifier. However, ‘If ’ may be

used to communicate a condition more explicitly to the novice reader.
Example:
Goal [USA, If Law 153 Passed]: 99.9%.
Goal [If Europe, If Product XYZ Announced]: 60%.

Synonyms: IF *399.
Related Concepts: Qualifier *124; Condition *024.

Impact Concept *087
An ‘impact’ is the estimated or actual numeric effect of a design idea
(or set of design ideas or Evo step) on a requirement attribute under
given conditions.
Notes:
1. Full impact information includes the following: a scale impact, a

percentage impact and uncertainty data (known error margins). The
additional related information required to support an impact includes
the evidence, source(s) and credibility.

2. If an impact is estimated, it is an Impact Estimate *433.
Related Concepts: Impact Estimate *433; Impacts *334.

Impact Estimate Concept *433
An impact estimate is an evaluated guess as to the result of
implementing a design idea. In other words, it is a considered,

Planguage Concept Glossary 367

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

quantified guess of the effect on a specific scalar requirement attribute
(performance or resource) of implementing a design idea (or set of
design ideas) in a system (or system subset) under stated conditions.
A full impact estimate includes the following: a scale impact, a
percentage impact and uncertainty data (known error margins). The
additional related information required to support an impact estimate
includes the evidence, source(s) and credibility.
Notes:
1. An impact estimate can be positive, neutral or negative (undesirable in

relation to stated target levels).
2. Note the distinction between a scale impact (an absolute numeric value

on a Scale), and a percentage impact (the percentage improvement
estimated to be achieved in moving from the chosen baseline towards
the chosen target).

3. An impact estimate is usually concerned with the system improvement,
rather than with stakeholder value (however, this depends on the
choice of requirement attribute: stakeholder value can be tackled, for
example, Financial Saving).

4. An impact estimate is usually on a scalar requirement. However, much
more rarely, it can be on a binary requirement of the system (that is, on
a function requirement, a design constraint or a condition constraint).
This is used in situations where an explicit check is considered neces-
sary to help evaluate design ideas.

Abbreviations: Impact *433 ‘‘Often ‘Impact’ is short for ‘Impact Esti-
mate’. See also Impact *087.’’
Related Concepts: Impact *087; Scale Impact *403; Percentage Impact
*306; Side Effect *273.

Impact Estimation Concept *283
A Planguage method/process used to evaluate the quantitative
impacts of design ideas on requirements.
Description: Chapter 9, ‘‘Impact Estimation: How to Understand Stra-
tegies and Design Ideas.’’
Acronym: IE *283.

Historical Note: History of the development of Impact Estimation: I’ve
developed the IE method in the course of my consultancy work. I originally
started in the early 1960s with multidimensional evaluation models, which
were later published (in 1968 at the Nord Data Conference) as ‘Weighted
Ranking by Levels’ or the MECCA method. By the 1970s, I had adopted a
table format. This was chiefly inspired by the ‘Requirements/Properties
Matrix’ presented by Dr. Barry Boehm, then of TRW Systems, in his
1974 IFIP Speech in Stockholm. The main difference in my approach
was that I wanted to provide a more quantified method; while I liked the
idea of the matrix structure, I found the TRW implementation too fuzzy.
See my ‘Software Metrics’ book (Gilb 1976 Out of Print). Finally, by the
mid-1980s, I had the basics of Impact Estimation (IE), which was
described in my Principles of Software Engineering Management (Gilb
1988) book. Subsequently, during the early 1990s, we (Kai Gilb and I)
added credibility evaluation and the use of graphical ‘skyscraper’ represen-
tation. I have also recently started using IE to explicitly outline evolutionary
step sequences.

368 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Notes:
Key Differences: Impact Estimation and QFD. I am frequently asked to
compare IE with Quality Function Deployment (QFD) (Akao 1990).
The key difference between IE and QFD tables lies in the degree of
quantification. In QFD, the objectives are rarely stated quantitatively,
design ideas tend not to be formally specified, cost is hardly ever con-
sidered and the evaluation of the impact of the design ideas is not numeric
(usually only an assignment of ‘weak’, ‘medium’ and ‘strong’ is made).
Also, there is no attempt at citing evidence, sources or credibility.

Impacts Concept *334
The ‘Impacts’ parameter is used to identify the set of attributes that are
considered likely to be impacted by a given attribute (usually another
requirement attribute or a proposed design idea).
Notes:
1. ‘Impacts’ can be used to capture Impact Estimation table relationships

before actual numeric estimation.
2. ‘Impacts’ differs from ‘Supports’ in that it can be used to identify side

effects, including negative side effects, as well as the intended direct
positive impacts.
Example:
Design Idea 1: Handbook Impacts {Learning, Development Cost}.
or
Design Idea 1: Handbook -> {Learning, Development Cost}.

Keyed Icon: ->
‘‘The ‘Impacts’ arrow is only valid in the context of tags referring to things
that can impact one another.’’
Example:
Design A -> Requirement B.
Related Concepts: Supports *415; Is Impacted By *412.

Includes Concept *391
‘Includes’ expresses the concept of inclusion of a set of components
within a larger set of components. ‘A Includes B.’ means that B is a sub-
component of the component A.
Example:
B: Includes {C, D, E}.

Example:
Bee.Wings ‘‘Wings is a member of supra concept, or parent concept,
Bee.’’
Bee: Includes {Wings, Legs, Eyes, Sting, Body}.
Bee: {Wings, Legs, Eyes, Sting, Body}. ‘‘Includes is implied by the set
parenthesis.’’
Alternative formats and synonyms for Includes.
Related Concepts: Consists Of *616.
Keyed Icon: { } ‘‘In context, X: {A, B} means X includes A and B.’’

Incremental Development Concept *318
Incremental development means designing a system largely up-front,
and then dividing its construction, and perhaps handover, into a series
of cumulative increments.

Planguage Concept Glossary 369

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Notes:
1. Incremental Development is defined here in order to contrast it with,

and distinguish it from, Evo:
. Incremental development differs from Evo in that most all of the
Incremental Development requirements design effort is up-front. In
contrast Evo carries out requirements and design detailing gradually
in each Evo cycle

. Incremental development is without Evo’s intent of measuring the
progress of each (incremental) step fully (for example, measuring
delivered performance levels), then learning from these feedback
measures and, changing the requirements and/or design accordingly

. Incremental development is also without the intent of delivering the
steps (increments) with the highest ‘value to cost ratio’ or ‘perfor-
mance to cost ratio’ first.

2. It is unfortunately common practice to say or write ‘incremental’ when the
strictly correct term according to the distinctions defined here is ‘evolu-
tionary.’ Indeed, all evolutionary processes are also incremental, but they
are a subclass deserving distinctive terminology to announce the differ-
ences. This ‘lazy’ use of the term is a sure sign of people who do not
have deep understanding, or concern for, the value of feedback
and change. Beware of their advice or opinions! The US DoD (DoD
Evo 2002 http://www.acq.osd.mil/dpap/ar/1_multipart_xF8FF_2_EA
%20SD%20Definitions%20final.pdf), among others, has taken the trou-
ble to carefully distinguish these concepts!

Related Concepts: Evolutionary Project Management (Evo) *355.

Incremental Scale Impact Concept *307
For a scalar requirement, this is the numeric impact of a design idea
relative to the specified baseline level. If there is a negative impact,
then the numeric value will be negative.
Scale Impact – Baseline¼ Incremental Scale Impact
Example:
Consider an objective concerning say, a ‘Customer Response Time,’
with a defined Scale of ‘Minutes to Wait.’ If the Baseline was ‘Past: 20
minutes to wait’ and the Target was ‘Goal: 5 minutes to wait’ and, the
Scale Impact (estimated or actual) of Design Idea X on Customer
Response Time was a result of ‘12 minutes to wait,’ then the Incre-
mental Scale Impact is 8 minutes (20" 12¼ 8).
The Percentage Impact is 8/15 or 53% relative to the Baseline (0%, or
20 minutes) and to the Target (100%, or 5 minutes).

Past = 20

Scale Impact = 12

Goal = 5

Incremental Scale Impact = 20 – 12 = 8

Figure G10

370 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Notes:
1. Designs vary in their impact, depending on previous circumstances.

The incremental impact is a function of these circumstances. The
impact of a design idea is not a constant, irrespective of the circum-
stances it is implemented in.

Related Concepts: Percentage Impact *306; Scale Impact *403.

Inspection Concept *051
‘Inspection’ is a synonym for Specification Quality Control (SQC).
Notes:
1. Michael Fagan originated the term ‘Inspection’ in connection with

software within IBM. He developed the initial method for quality
control of software. It is based on the work of Walter Shewhart, Joseph
Juran and others, who used the term for quality control of products
(rather than of specifications). Given the confusion in engineering
environments over the use of the term ‘Inspection’ (to hardware
engineers it means quality control after production of something), I
prefer to use the term, SQC.

2. Many people incorrectly equate the Defect Detection Process (DDP)
with ‘Inspection.’ They omit the Defect Prevention Process (DPP).
This is because they are unaware of the additional developments to
Inspection introduced by Mays and Jones (Mays 1995).

Synonyms: Specification Quality Control (SQC) *051; Peer Review
*051.

Is Impacted By Concept *412
‘Is Impacted By’ is used to indicate any other specified items (such as
requirements, objectives, designs, policies or conditions), which
affect, or might affect, a defined specification itself, or what it
refers to.
Notes:
1. The purpose of ‘Is Impacted By’ is to help in risk identification and

analysis. We are trying to explicitly identify and document factors,
which we believe influence the results. This will hopefully result in
specific action or design to keep those impacts from threatening our
planned results.

2. The more general purpose of Is ‘Impacted By,’ and many other
Planguage relationship mechanisms, is to build a ‘web of connections’
between specifications (that is, between system components). This web
of connections serves many purposes. Risk management was men-
tioned above. Other uses are configuration management, system famil-
iarization, quality control, estimation, contracting, prioritization, and
reviewing.
Example:
A:
Is Impacted By: {Help Desk Capacity, User Motivation, User Train-
ing, Bug Frequency}.

3. ‘Is Impacted By’ is differs from considerations of Risk/Threat in that
both good and bad impacts are considered. With Risk/Threat, we are
primarily concerned with the potential for negative impacts.

Planguage Concept Glossary 371

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

4. For strong primary intended impacts, the ‘Is Supported By’ icon can
be used, A ->> B. meaning B is supported by A. In other words, A is
primarily the way we intend to achieve the requirement/value B.

Synonyms: Impacted By *412.
Related Concepts: Risk *309; Threat *309; Dependency *189; Impacts
*334; Supports *415; Is Supported By *414.

Is Part Of Concept *621
‘Is Part Of’ is a parameter, which indicates that a specification is a
component or element of some other component or element.
Example:
PDSA Cycle:
Type: Process.
Consists Of: Sub-Process {Plan, Do, Study, Act}.
Plan:
Type: Sub-Process.
Is Part Of: PDSA Cycle.

Example:
Reliability Is Part Of Availability.
Related Concepts: Consists Of *616; Includes *391; Component *022;
Element *022.

Is Supported By Concept *414
‘Is Supported By’ is used to list the tags of any and all attributes that
contribute usefully to the accomplishment of the planned target levels
of a defined requirement.
Notes:
1. The attributes that can provide support include designs and

Evo steps.
Example:
Goal X:
Scale: <some scale definition>
Goal [Next Version]: 55%.
Is Supported By: Design Idea {A, B, C}.

Synonyms: Supported By *414.
Related Concepts: Supports *415; Impacts *334; Is Impacted By *412.

Issue Concept *276
An issue is any subject of concern that needs to be noted for analysis
and resolution.
Example:
ISS1: Issue: We have not analyzed risks and dependencies yet.
Notes:
1. A specification issue is an element of written specification, which we

suspect violates a specification rule. It is noted for later resolution. It
will be resolved by being declared to be either a defect (a rule violation)
or as requiring no further action.

Related Concepts: Resolution *525; Specification Issue *529.

372 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Kin Concept *353
Kin specifications are specifications, which derive from an identical set
of source specifications.
Notes:
1. For example, test plans, source code and user handbooks could all be

derived from the same requirements or the same design.
2. Kin specifications can serve as additional information to perform

defect checking in the Specification Quality Control (SQC) process.
For example, United Defense in Minnesota reported [personal com-
munication] that their software engineering checked the program code
against their test cases, both derived from the same requirements. They
reported that they usefully found major defects in both these kin
documents.

Landing Zone Concept *605
A landing zone is a target range that stretches from just better than a
Fail level through the Goal/Budget level to the Stretch Level.
Notes:
1. A landing zone is analogous to a parachute’s landing zone. A range that

we realistically hope we can land in somewhere. This avoids the
simplified notion of an exact Goal/Budget being the target.

2. For a set of requirements, the overall landing zone is the set of
landing zones, which ‘creates a space’ over all the requirement
dimensions.

3. The multidimensionality of landing zones is an important feature.
The space below Goal may seem unacceptable, but when you
consider all dimensions at once, sub-par achievement in a single
dimension is completely acceptable, if it means optimal system
performance.

4. A landing zone covers a success range and an acceptable range.
Related Concepts: Range *552.
Historical Note: The source of the Landing Zone concept was Intel, Oregon
(via Erik Simmons, 2002).

Table G2 A simple example showing multidimensional landing zones. It is landing within all
the landing zones simultaneously that is the aim. A teaching example using fictional data.
(Courtesy of Erik Simmons, Intel).

Attribute Fail Goal Stretch

Price >$27000 $20000 $17,500

Mileage (City) <18mpg 25mpg 35mpg

Seating <4 adults 5 adults 6 adults

Interior Noise at 65 mph >74 dBA 65 dBA 55 dBA

Projected 3-year Maintenance Cost >$3000 $2000 $1500

Planguage Concept Glossary 373

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Level Concept *337
A level is a defined numeric position on a scale of measure.
Notes:
1. A scalar level applies to either a performance or a resource attribute.
2. A level on a scale of measure indicates one of the following:

. a benchmark: an actual measurement or estimated level in the past

. a target: a requirement level

. a constraint: a limit

. an estimate of the impact of a design idea
Synonyms: Point *337: A position on a Scale.
Related Concepts: Range *552; Goal *109: Goal Level; Budget *480:
Budget Level; Stretch *404: Stretch Level; Wish *244: Wish Level; Fail
*098: Fail Level; Survival *440: Survival Level; Catastrophe *602: Cata-
strophe Level; Past *106: Past Level; Record *127: Record Level; Trend
*155: Trend Level; Limit *606: An extreme boundary of the range of a level.
Keyed Icon: | ‘‘In context on a Scale: ----|---> This is the generic attribute
level icon. It can be used instead of any of the more specific level icons (for
example, ‘>’ for Goal or Budget).’’

Limit Concept *606
A limit is a numeric level at a border, that is, at an edge of a scalar
range (a success range, an acceptable range, a failure range or a
catastrophe range). It is specifically used at the edges of ranges
associated with constraints: fail limit and survival limit/ catastrophe limit.
Related Concepts: Range *552; Fail *098: Fail Limit; Survival *440:
Survival Limit; Catastrophe *602: Catastrophe Limit.

Logical Page Concept *103
A logical page is definedas adefinednumber of non-commentarywords.
Default Volume: If no other definition is given, use ‘300 non-
commentary words’ per logical page as default.
Rationale: This measure of specification ‘volume’ is used to make sure
that varying page sizes and page content does not cause false volume
measures. Volume measures are important for establishing checking rates
(logical pages per hour) and defect density (majors per logical page).
Notes:
1. ‘Non-commentary’ is a useful concept because it only pays off to worry

about optimum checking rates or defect densities on non-commentary
specification (where potential danger lies in defects).

Abbreviations: Page *103: In an SQC context.
Acronym: LP *103.
Synonyms: Logical Page Size *103.
Related Concepts: Physical Page: This is one side, facing a reader, of space
for textual and/or graphical symbols, of physical or electronic nature. It
has clearly defined borders, traditionally rectangular, with any arbitrary
quantity of symbols.

Major Defect Concept *091
A major defect is a specification defect (a rule violation), which if not
fixed at an early stage of specification, then it’s consequences will
possibly grow substantially, in cost-to-fix and/or damage potential. A

374 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

major defect has on average approximately an order of magnitude
more downstream cost potential than it’s cost to remove immediately.
Rationale: This concept and classification is necessary to help SQC
checkers and other QC people to focus on what defects it pays off to find
and eliminate in a specification. Without this classification, up to 90% of
QC effort might be wasted dealing with minor defects.
Abbreviations: Major *091; M *091: Often intentionally written with a
capital ‘M’.
Related Concepts: Specification Defect *043; Minor Defect *096.

Master Definition Concept *303
The master definition of a specification or specification element is the
primary and authoritative source of information about its meaning. The
master definition overrides any other (informal, not master) definition
that is in conflict with it.
Notes:
1. This glossary contains master definitions, but the definitions them-

selves may contain explanations of other terms (for example, in the
Related Concepts sections), which are less formal and less authoritative
than the master definition for that concept.

2. A master definition should contain full information about the source,
authority, version and status, where relevant.

3. It is good practice to only permit a single master definition for a term
to exist, and all references concerning the master definition must point
to that single definition.
Example:
Master Definition: The primary correct source of a term’s meaning.
Type: Master Definition.

Measure, To Concept *386
To measure is to determine the numeric level of a scalar attribute under
specified conditions, using a defined process, by means of examining a
real system.
Notes:
1. Measurement is done on the defined Scale, with respect to specified

qualifier conditions.
2. Measuring is done using defined Meters.

Example:
Usability:
Scale: Mean Time To Learn.
Meter [Experts]: Use the upper 5% of our experienced staff in tests.
Meter [Novices]: Use 10% of current year’s intake of new people.
Fail [Experts, Complex Task]: 15 minutes.
Goal [Novices, Simple Tasks]: 10 minutes.
Two different Meter specifications are made in order to make it clear how
the two different targets shall be measured.

3. Measuring is distinct from quantification and estimation. Quantifica-
tion is merely defining an attribute with the help of a scale of measure,
and benchmarks and/or target values. Estimation is trying to deter-
mine results based on past data.

Related Concepts: Scale *132; Meter *093; Quantify, To *385; Esti-
mate, To *059.

Planguage Concept Glossary 375

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Meter Concept *093
A Meter parameter is used to identify, or specify, the definition of a
practical measuring device, process, or test that has been
selected for use in measuring a numeric value (level) on a
defined Scale.

‘‘there is nothing more important for the transaction of business than use of
operational definitions.’’

(W. Edwards Deming, Out of the Crisis (Deming 1986))
Example:
Satisfaction:
Scale: Percentage of <satisfied> Customers.
Meter [New Product, After Launch]: On-site survey after 30 days use for
all Customers.
Past [This Year, USA]: 30%.
Meter [Past]: Sample of 306 out of 1,000+ Customers.
Record [Last Year, Europe]: 44%.
Meter [Record]: 100% of Customers.
Goal [After Launch]: 99% <- Marketing Director.
In the above example, the first Meter specification is the one that will be
assumed, in default of any other specification, particularly for use in
validating the achievement of Goal targets. Both the benchmarks (Past
and Record) have local Meter specifications, which tell us more exactly the
measuring process used to gather their data. Of course, this implies that these
benchmark and target numbers are not as comparable as we would like them
to be. But that is the way it often is, and our local Meter specifications at
least allows us to judge whether this difference is significant for our current
purposes.
Keyed Icon: -|?| – ‘‘A ‘?’ on top of a Scale icon, -|-|-.’’

Metric Concept *095
A metric is any kind of numerically expressed system attribute. A metric
is defined in terms of a specified scale of measure, and usually one or
more numeric points on that scale. The numeric points can be
expressed with defined terms that can be translated into numbers. For
example, ‘Record þ10%.’
Normally there will also be other parameters and qualifiers, which add
background detail to the metric. For example, Meter and Assumption.
A metric specification encompasses all related elements of
specification, not just the Scale of the numeric attribute.
A complex specification, with a set of scales of measure, is also ametric
expression. There is no implication that it is elementary (has only a single
Scale).
Notes:
1. Metrics are used to express ‘concepts of variability’ clearly – in parti-

cular more clearly than mere words (Gilb 1976).
Example: [Metric Expressions]:
Scale: Mean Time Between Failures.
Use: Scale: Time to Learn defined [Average Task]. Past: 30 minutes.
Design A: Impacts Requirement B: 30%.
Each of these 3 statements is based on a ‘metrics culture.’

376 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Example: [Non-Metric Expressions]:
‘‘Reliability’’
‘‘Easy to learn’’
‘‘Very effective design’’
Each of these 3 expressions is based on a ‘non-metrics culture.’ Nice words –
no numbers expressed, defined or implied.

2. The rationale for using metrics includes:
. to increase clarity and unambiguousness of specifications
. to increase sensitivity to small changes in specifications and the
system itself

. to enable systems engineering logical thinking about relationships –
for example the relation of designs to requirements

. to provide a better basis for legal contracting about systems

. to enable evolutionary tracking of progress towards goals

. to enable a process of learning within projects, engineering and
management domains

. to force engineers to think more clearly and communicate more
clearly with others

3. A metric can be used to express the numeric impact of a design on a
performance requirement (for example, when using the Impact Esti-
mation method).

Related Concepts: Scale *132; Meter *094.

Minor Defect Concept *096
A minor defect is a non-major defect. It has no major downstream cost
potential.
Notes:
1. A defect which, if not removed at a given time, can be removed later

(for example, in test phases or in customer use) at approximately the
same cost or penalty.

2. There is little value in dealing with it immediately after it occurs. It can
be left to chance, or ignored until it surfaces of its own accord.

3. Minor does not refer to the size of the defect, but to the potential
consequences of it downstream.

Abbreviations: Minor *096;m *096: Deliberately written with a small ‘m’.
Related Concepts: Major Defect *091.

Mission Concept *097
A mission specifies who we are (or what we do) in relation to the rest of
the world. It is the highest level of function of a system. The mission
should not contain ‘vision’ description (‘We make the best planes in
the world’). It is an undramatic statement of the main function of a
business or organization.
Mission, like function, intentionally excludes specific levels of attributes
in its description.
Example:
Mission: We make semiconductors.
Mission: We provide business solutions in manufacturing software.
Related Concepts: Function *069.

Planguage Concept Glossary 377

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Non-Commentary Concept *294
‘Non-commentary’ refers to written specification that is not
commentary: it is either core specification or background
specification. All major specification defects are found in non-
commentary. But, not all specification defects in non-commentary
specifications are major. By definition, major defects cannot be found
in ‘commentary.’
Notes:
1. Text diagrams or symbols that are secondary to the main specifi-

cation purpose, and which do not lead to ‘real product’ are
‘commentary.’

2. Non-commentary sections of a specification can be termed ‘meat,’
and commentary sections can be termed ‘fat’. Commentary includes
{notes (like footnotes), comments (‘‘like this’’), remarks (Note),
introduction, and references (Source)}.

3. Checkers, in SQC, should concentrate on carrying out rigorous check-
ing, at optimum checking rates, on the non-commentary territory.
This gives better efficiency in finding defects.

4. It is important to formally distinguish between non-commentary and
commentary. Authors/writers need to try to make the distinction
visually for readers (for example, by using plain text for non-com-
mentary and italics for commentary). When the visual distinction is
made, and it is clear what is commentary and what is not, then
quality control analysts can more easily, and more certainly, decide
which defects are major and which are not. They can more quickly
scan the commentary and more carefully study and cross-reference
check the core specification, and then, somewhat faster, the back-
ground specification.

Related Concepts: Commentary *632; Background *507; Core Specifi-
cation *633; Specification *137; Major Defect *091.

Specification *137

Core Specification *633

• Function Requirement
• Scale
• Meter
• Goal/Budget
• Fail
• Survival
• Priority
• Other

Background *507

• Gist
• Ambition
• Past
• Assumption
• Risk
• Other

Non-Commentary *294 Commentary *632

• Note
• Bibliography
• Credits
• Other

Figure G11
The diagram shows the relationship amongst the different categories of
specification.

378 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Note Concept *018
A ‘note’ is a comment or any text that makes any kind of remark
related to any statement.
Ways of specifying notes include: italics, the use of ‘‘quotation marks’’,
and the Note parameter (which has a synonym of ‘Comment’).
Example:
Ambition: Main share of the market. ‘‘This is just an example of a
comment using quotes in a background statement.’’
Note: This is an example of the use of the Note parameter.
Notes:
1. Notes must be distinguished from the ‘significant’ core specification (for

example, Goal and Scale) and from ‘background’ specification (for
example, Source, Evidence and Gist). The main reason for this being
that a defect in Note specification is usually only a minor defect. Any
SQC checking should concentrate on the specification that is not Note
specification (that is, non-commentary–core and then background), as
that is where the major specification defects will be found.
Example:
Goal [First Release]: 60% <- Marketing Director [June 6 200X].
‘‘Source is background, but good for credibility and SQC.’’
Source: The Encyclopedia.

Synonyms: Notes *018; Comment *018; Remark *018.
Related Concepts: Commentary *632.
Keyed Icon: ‘‘ . . . ’’ ‘‘Double quote marks around the note.’’

Objective Concept *100
Objective is a synonym of Performance Requirement. See Performance
Requirement *100.

Or Concept *514
‘Or’ is a logical operator used in qualifiers, or other appropriate
specifications, to indicate alternative conditions. If any one ‘Or’
condition is true, then the set of conditions is true.
Example:
Stretch [If Multinational Or Government]: 99%.
Stretch [If Multinational or Government]: 99%.
Stretch [If Multinational OR Government]: 99%.
To make a statement read better, the lead capital letter may be dropped,
giving ‘or.’ It can also be spelled all capitals, ‘OR,’ to emphasize that it is a
Planguage logical operator and not a simple text word.
Notes:
1. Parenthesis: {Set parenthesis} and (ordinary mathematical parenth-

esis), may be used to limit and clarify the extent of a logical
expression.

Or Better Concept *550
‘Or Better’ is an expression used within a scalar specification to explicitly
emphasize that the specified level has a range of acceptable values,
rather than being just a fixed, single value. In other words, ‘Or Better’
helps identify the specified level as the beginning of a desired range.

Planguage Concept Glossary 379

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

‘Or Better’ is actually implied by a scalar target specification, but it can
be useful to be more explicit.
Example:
Goal [Mechanical]: 60 degrees Or Better.
Stretch: 99.90% Or Better.
Survival [Offices]: 35 degrees C Or Better.
Related Concepts: Until *551; Or Worse *549; Or Better *550; Range
*552.

Or Worse Concept *549
‘Or Worse’ is an expression used within a scalar specification to explicitly
emphasize that the specified level has a range of unacceptable values,
rather than being just a fixed, single value. In other words, ‘OrWorse’ helps
identify the beginning of a ‘nogo’ range. ‘OrWorse’ is actually implied by
a constraint specification, but it can be useful to be more explicit.
Example:
Must Avoid [EU, Next Generation Product]: 50% Or Worse.
Fail [Banking Market]: 20% Or Worse.
Related Concepts: Until *551; Or Better *550; Range *552.

Owner Concept *102
An owner is a person or group responsible for an object, and for
authorizing any change to it.
The parameter, Owner, can be used to explicitly identify ownership.
Notes:
1. For example: a system owner, a specification owner, a standard owner

or a process owner.
2. An owner is responsible for updating or changing an object, including

maintaining its control information (for example, Status, Version,
Quality Level and Location).

3. An owner will ensure the object adheres to any relevant standards.
Related Concepts: Stakeholder *233.

Parameter Concept *105
A parameter is a Planguage-defined term. Parameters are always
written with at least a leading capital letter, to signal the existence of
a formal definition.
Notes:
1. The master definition of most of the Planguage parameters is found in

this Glossary. See also http://www.gilb.com for additional, updated
and new parameters.

2. A project or specification author can declare and define tailored para-
meters (as part of a Project Language – a specific project specification
language). These can then be reused anywhere in a specification where
they are understood. They may in time be officially adopted by some
local dialect of Planguage.

3. Parameters are not user-defined terms. User-defined terms are defined by a
project or organization, to describe the target system, organization or project.
User-defined terms are not part of the definition of a specification language.

Synonyms: Specification Language Parameter *105.
Related Concepts: Term *151; Project Language *247; User-Defined
Term *530.

380 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Past Concept *106
A Past parameter is used to specify historical experience, a ‘benchmark’.
A Past specification states a historical numeric level, on a defined Scale,
under specified conditions [time, place, event] for a scalar attribute.
Notes:
1. Past values are stated to give us some interesting benchmark levels for

our old system(s) and our competitors’ systems.
2. Even ‘current’ values should be expressed using Past, because imme-

diately they are stated, they are ‘past’ values. Qualifiers will make plain
the currency of a specification.

Rationale: If we did not take the trouble to analyze and specify the past
values then we might not set reasonable targets. Unintentionally, targets
might even be specified worse than they were in the Past.
Synonyms: Past Level *106.
Related Concepts: Benchmark *007.
Keyed Icon: < ‘‘A single arrowhead, normally on a scalar arrow (<----
<----O---<---->), pointing ‘back’ to the past. Note the ‘<’ alone in other
contexts has other meanings such as: ‘<’ less than, ‘<-’ (source arrow),
‘<--------’ (tip of scalar arrow). So either it must be used in an unambig-
uous context or manner, or there be at least one hyphen, or [qualifier], on
either side of the arrowhead to distinguish this icon.’’

PDSA Concept *168
Acronym for Plan-Do-Study-Act Cycle *168.

Percentage Impact Concept *306
A percentage impact is an incremental scale impact expressed as a
percentage of the required improvement (the required improvement
being the scalar distance between a chosen benchmark (0%) and a
chosen target (100%)).
A percentage impact is part of an impact estimate and is used in
Impact Estimation tables.
Synonyms: Incremental Percentage Impact *306; Percentage Incremental
Impact *306; %Impact *306.
Related Concepts: Incremental Scale Impact *307; Scale Impact *403.

Percentage Uncertainty Concept *383
Percentage ‘Uncertainty’ is calculated from the scale uncertainty,
baseline and target data; and stated together with the percentage
impact value.
Notes:
1. Percentage Uncertainty can be used to identify risks in using specific

design ideas: the numeric ‘best case’ and ‘worst case’ deviations from
the Percentage Impact estimate provides important pointers towards
the level of risk involved. This can lead to one or more direct actions, if
the risk level is judged too high. For example (actions):
. to specify a design better
. to change the design itself
. to get more information about the design impacts
. to write contract conditions controlling the impact expected
. to schedule this design for early evolutionary step delivery (so we can
see what it really does).

Planguage Concept Glossary 381

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Example:
If Percentage Impact¼ 30% and Percentage Uncertainty¼$ 40%,
the overall impact in percentage terms is usually stated as
30%$ 40%. In other words, Percentage Impact is assessed to vary in
practice anywhere between "10% and 70%.
Dual System -> Reliability: 30$ 40% <- Company Experience
ranges from –10% to 70%.

Performance Concept *434
System performance is an attribute set that describes measurably ‘how
good’ the system is at delivering effectiveness to its stakeholders. Each
individual performance attribute level has a different ‘effectiveness,’
for different stakeholders and, consequently, different value or utility.
Within Planguage, performance attributes are scalar and are of three
types:
. Quality: ‘how well’
. Resource Saving: ‘how much saved’
. Workload Capacity: ‘how much’
Other possibilities exist for defining performance. For example:

‘‘Performance. A quantitative measure characterizing a physical or func-
tional attribute relating to the execution of a mission or function. Perfor-
mance attributes include quantity (how many or how much), quality (how
well), coverage (how much area, how far), timeliness (how responsive, how
frequent), and readiness (availability, mission readiness). Performance is an
attribute for all system people, products, and processes including those for
development, production, verification, deployment, operations, support,
training, and disposal. Thus, supportability parameters, manufacturing
process variability, reliability, and so forth, are all performance measures.’’

Source: USA MIL-STD 499B Draft 1992.
Notes:
1. The system engineer or system stakeholder can select, define, invent,

tailor or develop any number of useful or interesting performance
measures, to serve the purposes of their current task, or systems
engineering process.

FunctionResource

Design

Quality

Workload Capacity

Resource Saving

Performance

Figure G12
Performance characteristics are classified into three major types within Planguage. This is
an arbitrary, but useful distinction. See also the diagram in Quality *125.

382 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

2. Performance is intended to cover absolutely all performance measures.
It is not limited to the narrower conventional set of performance
measures (for example, throughput speed), but explicitly includes the
qualitative measures of performance, which are so weakly represented
and too rarely quantified in conventional thinking.

3. Performance is the most general sense of how well a function is done.
Performance includes:
. quality characteristics (such as availability, usability, integrity, adapt-
ability and portability), and

. resource saving characteristics (such as cost reduction and reduced
elapse times), and

. work-capacity characteristics (such as storage capacity, maximum
number of registered users and transaction execution speed).

Related Concepts: Quality *125; Resource Saving *429; Workload Capa-
city *459; Performance Requirement (Objective) *100; Performance
Target (goal) *439; Performance Constraint *438; Benchmark *007;
Target *489; Constraint *218.
Keyed Icon: O---> or Oþ ‘‘Compare with Keyed Icon [Resource *199]:
--->O or –O and Keyed Icon [System *145 [Not Design]]: {Resource,
Function, Performance, Condition}: [--->O--->] or [–Oþ].’’

Performance Constraint Concept *438
A performance constraint specifies some upper and lower limits for an
elementary scalar performance attribute. These limits are either levels
at which failure of some kind will be experienced, or levels at which the
survival of the entire system is threatened.
Fail and Survival parameters are used to specify performance constraints.
Notes:
1. Stakeholders impose constraints. These stakeholders and their motiva-

tion should be explicitly documented together with the constraint
specification (for example using Authority, Source, Rationale or Sta-
keholder parameters).
Example:
Speed:
Scale: Time in seconds <to react>.
Survival [Public Places]: 10 seconds maximum.
Authority: Public Safety Law.
Fail [All Uses of our Product]: 5 seconds.
Authority: Our Quality Director. Rationale: Time to react to alarm light.
Goal [Public Places]: 4 seconds. <- Project Manager.

2. Performance constraint (Survival and Fail) levels usually lie ‘outside’
the performance target (Goal, Stretch, Wish) levels.

3. Why an upper constraint limit for a performance? There are many
reasons, which include:
. To avoid ‘arms race escalation’
. To avoid unnecessary costs, which would not be valued by a market
. To avoid costing yourself out of a market
. To avoid unnecessary cost – contract income is constant when you
reach such a limit

. To avoid ‘gold plating’ and over-engineering

. To avoid becoming a monopoly and provoking legal reaction

. To avoid showing your hand to the opposition.

Planguage Concept Glossary 383

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Related Concepts: Performance *434; Performance Requirement (Objec-
tive) *100; Performance Target (goal) *439; Constraint *218; Fail *098;
Survival *440.

Performance Requirement Concept *100
A performance requirement (objective) specifies the stakeholder
requirements for ‘how well’ a system should perform.
A performance requirement can be complex or elementary. It is a
scalar concept, and at elementary level is defined quantitatively by a
set of performance targets and performance constraints.
Typical examples of performance requirements include ‘Usability,’
‘Reliability’ and ‘Customer Satisfaction.’
Performance Requirements are limited to consideration of the
performance effectiveness of a system, without regard to the
efficiency of it. That is, a performance requirement describes some
aspect of the required performance; it does not describe the costs
(the resources needed) to get the performance.
Notes:
1. The distinction between use of the terms ‘objectives,’ ‘quality require-

ments’ or ‘performance requirements’ is often simply dependent on the
culture using them. Engineers are more likely to speak about ‘quality
requirements’ for a system or product.Managers (of people and organiza-
tions) are more likely to think in terms of business/technical ‘objectives.’

2. A performance requirement is a potentially complex, detailed specifi-
cation. It can consist of a whole hierarchy of performance attributes.

3. For each elementary performance attribute (distinguished by having
only one Scale), there can be many performance targets and/or perfor-
mance constraints.
(Note: this does not mean that the concept behind an elementary
performance requirement is not ‘really’ somehow complex, and that

Scalar Parameter Concepts

[] [

? + + ?

]

Resource Targets

Resource Constraints

Wish Stretch Budget Goal Stretch Wish

Performance Targets

Survival Fail Survival

Performance Constraints

Survival Fail Survival

Past Past

Resource Benchmarks Performance Benchmarks

Performance
Requirement/

Objective

Figure G13
A performance requirement (objective) is specified as a set of performance targets and
performance constraints.

384 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

it is not capable of further sub-setting. It is simply that for the given
system, further sub-concepts are not considered to be of interest or use
at the current time. So ‘complex’ means ‘complex in terms of whether
we have decided to decompose the concept in the current specification,’
not complex in terms of some constant reality.)
Example:
We can generally speak about a performance requirement, ‘Reliability’ for
a defined system. Reliability may well be specified as elementary (having
only one scale of measure). There can be several targets and constraints
specified. Here below, is an elementary Reliability performance require-
ment with a Fail level and two Goal level specifications. Qualifiers
distinguish the Goal level specifications from each other.
Reliability: ‘‘A Performance Requirement or Objective’’
Scale: MTBF.
Fail: 30,000 Hours. ‘‘Constraint 1’’
Goal [1st Release]: 40,000 Hours. ‘‘Goal 1 ’’
Goal [2nd Release]: 50,000 Hours. ‘‘Goal 2 ’’
Of course, the ‘Reliability’ performance requirement could instead be a complex
objective (that is, composed of one or more sub-objectives (elementary or
complex)). For example, we might be interested in two Scales: ‘Mean Time
Between Failure (MTBF)’ and ‘Number of Repeat Occurrences of Faults.’ We
would specify both of them as sub-requirements of the ‘Reliability’ requirement.

Example:
Reliability: {Failure Rate, Repeat Failures}.

4. Additional supporting information can be present in benchmark para-
meters (Past, Record, Trend).
Example:
Stretch [Main Markets, Within the Decade]: 99.998%.
A Performance Target.

Example:
Security [CorporateWebservers]: Elementary Performance Requirement.
Version: 3.1. Owner: Tom. Sponsor: Simon.
Scale: Annual Frequency of defined [Type of Penetration] using
defined [Type of Threat] used by defined [Type of Perpetrator].
Meter [Acceptance]: At least 300 representative cases of [Type of
Threat] <- Contract 2.3.5.
================== Performance Targets ==================
Goal [Security Type 1, Next Year]: <10 <- Official Project Steering
Committee Agreement.
Stretch [Security Type 1, Next Year]: 0 <- Technical Director’s
Challenge.
================= Performance Constraint ================
Survival [Security Type 1, Next Year and On]: 60 <- CEO Public
Promise of Improvement.
====================== Benchmark =====================
Past [Security Type 1, Last Year]: 66 <- Annual Executive Security
Report [Page 55].
====================== Definitions =====================
Security Type 1: Defined As: Type of Penetration¼Access, Type of
Threat¼Remote Terminal, Type of Perpetrator¼Hacker].
An Elementary Performance Requirement.

Planguage Concept Glossary 385

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Performance Requirement. ‘‘The extent to which a mission or function must
be executed, generally measured in terms of quantity, quality, coverage,
timeliness, or readiness.’’

Source: US MIL-STD 499B 1994.

Synonyms: Objective *100.
Related Concepts: Requirement *026; Performance Target (goal) *439;
Performance Constraint *438.

Performance Target Concept *439
A performance target (goal) is a stakeholder-valued, numeric level of
system performance. There are three types of performance target:
. a committed planned level (Goal),
. an uncommitted motivating level (Stretch), and
. an uncommitted valued level (Wish).
Notes:
1. The target parameters {Goal, Stretch, Wish} are used to express per-

formance targets.
Example:
Goal [Main Asian Markets, Next Quarter]: 60,000 hours.
A Performance Target.

2. A performance target is a single required level of performance (such as a
Goal specification).
Example:
Goal [USA, Next Release]: 99.50%.

3. In contrast, a performance requirement includes both performance
targets and performance constraints.

Synonyms: goal *439 (with a small ‘g’ to distinguish it from the para-
meter, ‘Goal’).
Related Concepts: Performance *434; Performance Requirement (Objec-
tive) *100; Performance Constraint *438; Target *048; Goal *109;
Stretch *404; Wish *244.

Performance to Cost Ratio Concept *010
For a design idea (or set of design ideas or an Evo step), the ratio of the
performance improvements to the cost of the resources needed to
implement them.
For a selected set of requirements:
Performance to Cost Ratio = Sum of Performance/Sum of Costs
Rationale: Such ratios allow comparison of different design ideas to
determine which is the most cost efficient. Popularly (USA), ‘‘Bang for
the buck’’.
Notes:
1. Provided Sum of Costs is used, costs are any idea of resources, and are not

limited to financial costs. This is possible because it is the percentage costs
that are being summed. Any useful set of cost attributes may be used.

2. An alternative way to calculate the Performance to Cost Ratio is to use
the sum of the absolute financial costs, rather than Sum of Costs. This
can be a simpler solution as it avoids some arithmetic. It also gives the
actual financial costs more prominence.

3. Keep in mind the essential distinctions between achieving the perfor-
mance requirements, the consequent value to given stakeholders under

386 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

given circumstances of reaching those target levels, and the actual
benefits that the stakeholders obtain. A ‘value to cost’ ratio calculation
or a ‘benefit to cost’ ratio calculation, while more demanding, might
give a more realistic evaluation.

A performance to cost ratio is a simpler measure: the amount of require-
ments satisfied to the cost incurred. It could be considered as ‘how far a
project is going towards meeting all its goals for what level of cost’.
Related Concepts: Sum of Performance *008; Sum of Costs *128; Value
*269; Value to Cost Ratio *635; Benefit *009.

Place Concept *107
‘Place’ defines ‘where’. It relates to any notion of place, such as
geographic location, stakeholder role, customer market or system
component.
Place is used both as a parameter and in a qualifier condition.
Example:
Place [Person Type]: {Buddhist, Korean, Teenager}.
‘Place’ used as a parameter.
Goal [Place¼ {USA, CAN, MEX}, Date¼Ten Years Time, Software
Sub-system]: 60% <- North America Marketing Plan.
‘Place’ defined as a set of acronyms for countries.
Notes:
1. Place refers to the set of possible scope dimensions that are neither

temporal, nor event dependent.
2. Place refers to notions such as:

. geography (for example, a city, a country)

. organizational (for example, IBM, Nokia, US Government, UK
MoD)

. types of people, including groups (for example, novice, teenager,
pensioners)

. system components (for example, hardware, radio transmitter, soft-
ware, database, user terminals, chips)

. role (manager, operator, trainee).
3. There can be any useful number of place dimensions in a single

qualifier expression.
Synonyms: Space *107.
Related Concepts: Time *153; Event *062; Qualifier *124; Scope *419.

Plan-Do-Study-Act Cycle Concept *168
The Plan-Do-Study-Act Cycle (PDSA Cycle) is a process cycle. It is a
method for changing a defined work process to reflect measurably
better process. The concept was developed by Walter Shewhart and
taught byW. Edwards Deming (Delavigne and Robertson 1994; Deming
1986; 1993).
Notes:
1. The PDSA Cycle involves the following:

. Decide on an improvement and how to accomplish it. (‘Plan’)

. Carry out the improvement as planned (‘Do’)

. Gather data about costs and resulting improvements and side effects,
analyze the data and decide what it means (‘Study’, sometimes called
‘Check’)

. Adopt the change as is, or try again in a better way (‘Act’)

Planguage Concept Glossary 387

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

The ‘Plan’ phase involves specifying a theory or hypothesis, including a
procedure for testing it. It sets out the order and timing of tasks and
events that need to occur to achieve the ‘Do’ phase. In addition, ‘Plan’
specifies the entry and exit conditions for the ‘Do’ phase, including the
criteria for terminating it early (prior to required results being
achieved) and the testing procedures. It also plans the resources
required. In Evo, ‘Plan’ is the planning for the delivery of the step that
has just been selected.
The ‘Do’ phase involves implementing (Do . . . ing) what you have
planned, that is, carrying out the ‘experiment’ to see how your plan
measures up to reality. In Evo, ‘Do’ is the step implementation.
The ‘Study’ phase observes and gathers data concerning the results of
the ‘Do’ phase. It is basically concerned with ‘What happened?’ It can
involve highly varied analysis activities, depending on the activity being
controlled, such as obtaining feedback data, carrying out specification
quality control (SQC) and testing. It is a preparation for drawing
conclusions and taking action in the ‘Act’ phase. In Evo, ‘Study’ is
the phase where we analyze all the feedback from the last step, in
relation to requirements and external impulses (like change of market
or law).
The ‘Act’ phase decides on what course of action should be taken
based on the information supplied by the ‘Study’ phase. It is to
standardize the process at a new level, or to draw new conclusions
about our original theory or to determine and select new theories (to
design or modify processes). In Evo, ‘Act’ means reviewing the Evo
plan, determining the gap priorities, finding alternative steps and
deciding on the next step from the various alternatives. If the results
of the last step are not satisfactory, a course of action to correct it
might be decided upon.

2. A PDSA Cycle is enabled by standardizing and stabilizing its target
process (meaning: ‘wherever you carry out the improvement’), so that
the effects of any process changes can be credibly observed.

*Act. Adopt the change or Abandon it or Run through the cycle again,
possibly under different conditions.

The Shewhart Cycle for Learning and Improvement
The PDSA Cycle

Act*

Study the results.

Plan a change or a test,
aimed at improvement.

(Do) Carry out the change
or the test (preferably on a
small scale)

A P

S D

Figure G14
Reproduction from a letter to Tom Gilb from W. Edwards Deming, May 18, 1991.

388 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Acronyms: PDSA Cycle *168; PDSA *168.
Related Concepts: Plan [PDSA] *169; Do [PDSA] *170; Study [PDSA]
*171; Act [PDSA] *172; Evolutionary Project Management *355; Sta-
tistical Process Control (SPC) *466.
Historical Note: The Study phase has sometimes been called ‘Check’. For
example, Deming used Plan-Do-Check-Act (PDCA) in his book, Out of the
Crisis (Deming 1986). However, in a letter to me (Tom Gilb) in May 1991,
he said he strongly preferred the initial Walter Shewhart usage, PDSA, due to
the word ‘check’ having other interpretations, such as ‘stop.’

Planguage ! Tom Gilb Concept *030
Planguage is a specification language and a set of relatedmethods for
systems engineering.
Notes:
1. Planguage specifically supports all aspects of systems engineering includ-

ing requirement specification, design specification, design impact ana-
lysis, specification quality control and evolutionary project management.

2. Planguage can, however, be used much more generally; it has been
used successfully to plan such diverse things as family holidays and
multinational charity aid project plans.
Planguage is designed to express ideas about any requirements, designs
and plans.

3. Planguage is intended for use throughout a project lifecycle: for plan-
ning, problem-solving, specification quality control and result delivery
to stakeholders.

4. Planguage has been developed by Tom Gilb, and is defined in this
book. There has been lots of feedback from clients and professional
friends. Its general content is described more fully in both the Intro-
duction and Chapter 1 of this book.

5. The purpose of the copyright is to avoid being prevented later from
using this term by others. Permission to use the term freely is granted
by Tom Gilb when ! is acknowledged.

6. If any reader finds the term ‘Planguage’ too ‘cute,’ they may use the
more directly descriptive ‘Planning Language.’ I (Tom Gilb) often
refer to ‘Planning Language’ before I introduce the term ‘Planguage.’

Synonyms: Planning Language *030.

Priority Concept *112
A ‘priority’ is the determination of a relative claim on limited resources.
Priority is the relative right of a competing requirement to the budgeted
resources. If resources were unlimited, there would be no need to
prioritize things. You could ‘have it all.’
An explicit Priority parameter can be used to specify any direct priority
relationships.
Notes:
1. The specified, qualified, stakeholder requirements (the targets and

constraints stated in the requirements) provide ‘natural’ (requirement
related), and dynamically computable, priority information. The gaps
remaining until the goals are met, and budgets used up, can be
measured and computed. In general, the largest gap to a performance
target will have the highest priority, and the largest gap to using up a
budgeted resource will indicate the safest resource opportunity.

Planguage Concept Glossary 389

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

However, to determine your priorities in specific cases, the degrees of
risk and uncertainties, and/or knowledge of the effort (the resources)
needed to close the individual gaps to meet each of the function and
performance targets, and the likely resulting stakeholder values on
delivery, all need to be taken into account (see below for a more
complete list).

2. Priority is not a constant. It cannot and should not be determined
and specified in the form of static priority weighting numbers (for
example, ‘25%,’ or third on the priority list) or words (for exam-
ple, ‘High’). Current priority depends on how well satisfied the
competing performance targets are and how ‘used up’ the budgeted
resources are at any given time. Current priority also depends on
the more fundamental changes that can occur in requirements
themselves, as stakeholders modify their requirements, and as the
external business environment alters – to demand requirement
changes.
Example:
Consider your priorities for food and air. If you are hungry, then you
give priority to eating. However, as soon as air is in short supply, your
priorities change. Your body gives priority to breathing.
Your body knows your food and air requirements, both targets and
constraints. Your body knows the current supply levels of these
resources. When changes in the body resource levels dictate change in
our priorities, this knowledge triggers the body to appropriate action.
The body, as a system, acts in order to ensure our comfort and survival.
Priority is dynamic.

3. Priority is decided by a wide variety of factors, which include but are
not limited to:
. qualifier conditions (factors such as timescales and location)
. stakeholder authority
. stakeholder influence
. consequences of failure (not meeting Fail constraint levels)
. consequences of catastrophe (not meeting Survival constraint levels)
. previous experience of meeting similar requirements (including no
experience!)

. complexity of meeting the requirements

. consequences of success (primarily meeting the performance targets,
the Goal levels: the system improvements delivered, and the benefits
likely to be experienced)

. resource availability (or maybe more significantly, resource unavail-
ability)

. dependencies.
Within Planguage, the relative priority of a requirement depends on a
combination of the elements of the specification. These elements
include target levels (for example, Goal and Budget), constraint levels
(for example, Fail and Survival), its qualifier conditions [time, place,
event], and its authority level.
If you consider only the different requirement level parameters as a
class: first priority is satisfaction of all the constraints; the Survival
levels, then the Fail levels. Then next priority becomes satisfaction of
targets; the Goal levels, after that any Stretch goals are considered, and
finally perhaps some Wish levels.

390 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

However, you have also to consider the qualifier conditions as well, for
all these levels, as qualifiers bring into play additional factors, like the
timescales for the requirements to be met, and the events under which
the requirements actually exist.
No priority exists until the qualifier conditions [time, place, event] warn
us of potentially unfulfilled requirements. Targets and constraints are not
finally effective until their qualifier conditions are true, but the designer,
the architect and the project manager have to prioritize their contribution
in advance of deadlines, and other conditions, becoming ‘true.’

4. Stakeholders’ needs will ultimately decide the relative priorities. There will
be trade-offs to consider when there are conflicts between requirements.
System designers should evaluate priorities and then present the results
for confirmation, selection or conflict resolution to the stakeholders
themselves. Stakeholders, as a result of seeing the cost and feasibility of
design options, may then choose to change some of their priority
specifications.

5. The Priority parameter can be used to help people to more directly
understand the priorities (or to confirm the derived priorities with
stakeholders). Alternatively, it can be used to specify priorities that
differ from what would otherwise be expected or evaluated.

6. Rationale and Source parameters should ideally support Priority para-
meter specifications.
Example:
Usability:
Scale: <Speed of mastering> defined [Tasks] by defined [Staff Type].
Fail [USA, Task¼Query Handling, Staff Type¼Customer Service]:
35 hours.
Fail [Europe, Task¼Query Handling, Staff Type¼ Junior Manage-
ment]: 25 hours.
Goal [Australia, Task¼Query Handling, Staff Type¼Customer Ser-
vice]: 30 hours.
Priority [Usability]: Australia Before Europe Before USA <- Market-
ing Plan 6.5.
Rationale: Past bad experiences with current system.
Source: Technical Director.
Without the explicit ‘Priority’ statement we would normally prior-
itize the Fail levels. However, the Priority specification means we
should use scarce resources on the Australia Goal before we use them
on the two Fail levels. We should then use resource on Europe before
the USA.

Related Concepts: Level *337; Risk *309; Gap *359; Dependency *189.

Procedure Concept *115
A procedure is a repeatable description to instruct people as to the
best-known practice, or recommended way, to carry out the task of a
defined process. A procedure is part of a process description.

‘‘No matter how many theorists have advocated a procedure, if the proce-
dure has been given a thorough trial and then abandoned, there is a strong
presumption that it is unsound.’’
<-(Mintzberg 1994 Page 135, quoting R. N. Anthony, 1965, Page166, in
Planning and Control Systems, Graduate School of Business Administration,

Harvard University).

Planguage Concept Glossary 391

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Notes:
1. The procedure description can be kept and presented in various forms

including {forms, guidelines, diagrams, video and audio; even unwrit-
ten, but understood procedures}.

2. A procedure describes a task that there is benefit in standardizing
(usually, because it is carried out so often, to ensure best practice and
to prevent error).

Related Concepts: Task *149; Process *113.

Process Concept *113
A process is a work activity consisting of:
. an entry process, which examines entry conditions
. a task process, which follows a procedure defining the task. There
might also be an associated verification process, such as test or
quality control

. an exit process, which examines exit conditions.
Processes transform inputs to outputs, using resources, and display their
own performance and resource (cost) characteristics.

Notes:
1. A process is a set of actions, carried out by people, nature or machines

(agents), which can be defined by inputs, outputs, a sequenced set of
actions and its performance, and resource attributes.

2. Processes can only be fully understood by including information about
the agent who executes the process (their work environment, compe-
tence, experience, training).

Process: ‘‘A system of activities that use resources to transform inputs to
outputs.’’

Source: ISO 9000, 2000.

Synonyms: Work Process *113.
Drawn Icon: A rectangle with up arrow on left side.
Related Concepts: Task *149.

Task ProcessEntry
Process

Exit
Process

Figure G15
A process with its three main component sub-processes.

Figure G16
The drawn icon for Process *113.

392 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Process Improvement Concept *114
Process improvement is systematic activity, which consists of:
. determining the root systemic causes of human work process problems,
then

. changing defined and stable work processes, with the intention of
eliminating, or reducing, the human tendency to commit errors, and
therefore improving productivity or costs.

‘Root causes’ are the earliest defect causes in the chain of all causes and
effects. It pays to remove the source of a problem. ‘Systemic causes’ are
those that are built into the process, and bound to cause a problem
regularly if not improved. The proof of improvement lies in the results
from a changed process.
Related Concepts: Root Cause *263; Systemic *262.

Qualifier Concept *124
A qualifier is a defined set of conditions embedded in, or referenced by,
a specification. All of its conditionsmust be ‘true,’ for that specification to
apply. A qualifier defines any interesting set of specific time, location and
event conditions (also known as qualifier conditions). These are
sometimes called ‘when,’ ‘where’ and ‘if’ conditions.
Square brackets around the qualifier conditions are used to denote a
qualifier. An alternative is to use the Qualifier parameter (which also
happens to use square brackets!).
Example:
Goal [Germany, Teachers]: 65%.
Where ‘Germany’ and ‘Teachers’ are each qualifier conditions (defined
elsewhere). The set of qualifier conditions, and the square brackets, form
the qualifier.

Example:
Goal [German School]: 65%.
German School: Qualifier: [Country¼Germany, User¼Teachers].
Where ‘German School’ is a defined reusable qualifier. Tagging a ‘Qualifier’
parameter or statement allows us to simplify a large set of qualifier condi-
tions, and perhaps to describe or summarize them at the same time. ‘German
School: [Country¼Germany, User¼Teachers].’ would be the logical
equivalent to the ‘Qualifier:’ statement above. You can tag a qualifier
directly.
Notes:
1. Qualifiers can be present in any specification (for example, a system

attribute specification, a requirement specification, a design idea spe-
cification or an Evo step specification). Most Planguage parameter
specifications are subject to qualifiers (either explicit, implied or
inherited).

2. Any number of qualifier conditions can apply to a given specification,
expression or statement. There can be multiple instances of any one class of
qualifier conditions. There is no sequence requirement for the conditions.

3. Qualifiers are always specified as sets within square brackets, ‘[]’, even
when a ‘Qualifier’ parameter is used.

4. Qualifiers have to be evaluated to see if they are ‘true’ in any given instance.
In the case of evaluating an Evo step, this may be done in real time.

Planguage Concept Glossary 393

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

5. Qualifiers have the effect of ‘dividing up’ a system into separate, maybe
overlapping, system dimensions or ‘views.’ This has many uses. One
use is to divide up a system into smaller distinct areas for delivery of
Evo steps.

6. A qualifier is a substantial contribution to understanding the priority of
a specification.
Example:
Project Manager Attendance:
Goal [By¼Next Year, Market¼London, Activity¼Customer Meet-
ings, Event Condition¼ If Sale Agreed]: 90%.
The qualifier conditions specify when, where, during which activity, and
after which event – the Goal has validity – and thus has priority over any
specification that is not yet valid.
MOP:
Scale: % Uptime.
Goal [QQ]: 99.5%.
Stretch [QQ]: 99.9%
QQ: Qualifier [By End of Year, Home Market, Consumer Goods, If
Fierce Competition on Price].
Authority [MOP]: Product Planning.
The MOP requirement has two distinct priority mechanisms. The MOP
Goal statement has priority over a corresponding (‘has same qualifier’)
Stretch statement. Secondly, the QQ tagged qualifier has a number of
qualifier conditions that must all be true for either of the target levels to be
in force. The Authority statement gives additional prioritization informa-
tion for MOP, in relation to other requirements with different powers
behind them.

7. A qualifier defines the set of conditions, which together enable, or
‘activate’, a related statement. The potential qualifier conditions can be
roughly classified as:
. time conditions: ‘when’: Dates, deadlines, relative times to events,
weekdays, hours (time spans or precise hour)

. place conditions: any notion of ‘where’: Geographical location; type
of person, group or role (like trainee, teenager, teacher); system
component (like module, program, laptop screen, software, con-
tracts, standards)

. event conditions: any notions of ‘if ’: Any occurrence conditions such as:
– activity commenced or terminated (like project started, policy
issued)

– activity in progress (like testing being carried out, parliament in
session, voting in progress)

– specific indicator set (like red light is on)
– specific status attained (like Approved, Checked).

. We can optionally preface event conditions with the logical ‘If’
parameter in order to emphasize that we must analyze the status of
the event to determine if the qualifier condition is ‘true’.

Example:
Fail [Europe, Year¼After Ten Years, Peace]: 60%$ 20% <- Annual
Plan Section 6.4.5.
The three qualifier conditions must all be ‘true’ for the ‘60%’ requirement
level to be a valid requirement. ‘Peace’ is an example of an event condition.
Europe is a place condition.

394 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

8. The implication of the qualifier definition, that all qualifier conditions
must be ‘true’ to have effect, is that in a qualifier like [A, B, C], ‘A and B
and C’ must be valid for the qualifier to ‘enable’ its related statement.

9. Here are some notes on how the concepts of qualifier, qualifier con-
dition and scale qualifier relate to each other.
Qualifier¼ [qualifier condition 1, qualifier condition 2, . . . qualifier
condition n]
Scale Qualifier¼ [sets up a need for one qualifier condition to be
specified on use of the Scale]
Scale Variable¼ a value for a qualifier condition satisfying a scale
qualifier in a statement referring to the defined Scale..
Scale: [scale qualifier 1] [scale qualifier 2] [scale
qualifier n].
Parameter [Qualifier]: assigned numeric value.
Remember a Qualifier is a set of qualifier conditions:
Parameter [{qualifier conditions}]: assigned numeric value.
Qualifier¼ [qualifier condition 1¼ scale qualifier 1¼ scale variable 1,

qualifier condition 2¼ scale qualifier 2¼ scale variable 2,
. . . ,
qualifier condition n¼ scale qualifier n¼ scale variable n,
other qualifier conditions as needed not related to the Scale].

Scale: [scale qualifier n: Default¼ scale variable n].
Related Concepts: View *484; Time *153; Place *107; Event *062;
Condition *024; Scale Qualifier *381; Indicator*195; Status *174.
Keyed Icon: [] ‘‘Square brackets around any set of qualifiers.’’

Quality Concept *125
A quality is a scalar attribute reflecting ‘how well’ a system functions.
Example:
Quality: Includes: {Availability, Usability, Integrity, Adaptability, and
many others}.
Notes:
1. A quality is a system performance attribute. All systems have a large

number of quality attributes in practice. In a given situation, only the
relevant quality attributes will be specified: these are the qualities
specifically valued by the stakeholders.

2. All qualities can be described numerically using a defined Scale, or
set of Scales. Existing quality levels can be specified as benchmarks,
and needed future quality levels can be specified as targets and
constraints.

Performance
*434

Quality
*125

Workload Capacity
*459

Resource Saving
*429

Figure G17
Quality viewed in the context of Performance.

Planguage Concept Glossary 395

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

3. Quality is distinct from the other performance attributes: Work Capa-
city and Resource Saving.

4. Quality is characterized by these traits:
. Quality describes ’how well’ a function is done
. Quality is valued to some degree by some stakeholders of the system
. More quality is generally valued by stakeholders; especially if the
increase is free, or at lower cost, than the value of the increase

. Quality attributes can be articulated independently of the specific
means (designs) used for reaching a specific quality level – even
though all quality levels depend on the particular designs used to
achieve them

. A specific quality can be a described in terms of a complex
concept, consisting of multiple complex and/or elementary quality
concepts

. Quality is variable (along a definable scale of measure: as are all
scalar attributes)

. Quality levels are capable of being specified quantitatively (as are all
scalar attributes)

. Quality levels can be measured in practice

. Quality levels can be traded off to some degree; with other system
attributes valued more by stakeholders

. Quality can never be perfect in the real world

. There are some levels of a specific quality that may be outside the
state of the art at a defined time and under defined circumstances

. When quality levels increase towards perfection, the resources
needed to support those levels tend towards infinity

Related Concepts: Performance *434; Resource Saving *429; Workload
Capacity *459; Quality Requirement *453.

Quality Level Concept *360
The quality level of a specification is a measure of its conformance to
any specified relevant standards.
The Quality Level parameter is used to specify the estimated defect
density for a specification: in other words, the number of estimated
remaining major defects/(logical) page.
Synonyms: Major Defect Density *360; Specification Quality Level *360.
Related Concepts: Status *174; Remaining Major Defects/Page *060;
Specification Defect *043; Major Defect *091; Logical Page *103.

Quantify, To Concept *385
To quantify is to specify numerically.
Notes:
1. To articulate a variable attribute using a defined scale of measure and

specifying one or more numeric levels on the Scale. The resulting
specification is ‘quantified.’

2. In particular, we need to be clear that ‘to quantify’ is not identical to
the concept of ‘to measure.’ Measuring is the act of determining where
we are, on a defined scale of measure, in practice by using a Meter.
Quantification is a type of specification that is a prerequisite for other
processes, such as Estimation, Measurement, Testing, and Feedback Control.

396 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

3. Quantification must not be confused with estimation, either. You can
quantify without estimation and without measurement! Estimation is
to determine a particular (qualifier specified) past or future number,
on a defined scale of measure.

4. In Planguage, quantification begins with the definition of a Scale.
Quantification continues, and takes on more specific meaning by using
benchmarks, targets, assumptions and the many other specification
parameters that relate to the defined scale of measure.

Dictionary Definition of ‘Quantify’:

‘‘1. To determine or express the quantity of; indicate the extent of; measure
2. To express in quantitative terms, or as a numerical equivalent logic

to make the quantity or extension of a term or symbol clear and
explicit by the use of a quantifier, as all, none, or some.’’

<- Webster’s New WorldTM College Dictionary (Third Edition).

The Planguage definition of quantify (identical to variant 2 above) does not
admit to the term ‘measure’ which is contained in variant 1 of this definition,
and in common use of the word. In Planguage, ‘measurement’ (as in variant 1)
is a quite distinct activity, based on the quantification (but not identical to it).
Related Concepts: Scale *132; Meter *093; Measure, To *386; Estimate,
To *059.

Range Concept *552
A range is the extent between and including two defined numeric
levels on a scale of measure.
Notes:
1. Range captures a snapshot of some common scalar attribute ranges

(using the target and constraint levels). Some examples of different
range classifications include:
. Success Range – project or product success
. Acceptable Range – not success, but not failure
. Failure Range – some degree of problems or failure
. Catastrophe Range – forget it! No use and no hope!

2. A range is usually implied by specification of the relevant levels. For
example, a performance success range goes from the applicable Goal
level in the direction of ‘better’ forever, unless bounded by an upper
Survival level.

3. Range, like a level, is interpreted with regard to any specified qualifier
conditions. In other words if a scalar level qualifier, for example for a Goal
level, is not valid, the range implied by that Goal level is not valid either.

4. Different stakeholders can specify levels with implied ranges that over-
lap with each other. ‘One man’s meat is another man’s poison,’ as the

Specification Quantification
Estimation

Measurement

Figure G18

Planguage Concept Glossary 397

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

saying goes. Designers need to consider the set of overlapping ranges in
an attempt to maximize design efficiency. This is complex, but the
problem can at least be clearly seen.

5. A range can include the idea of a set of benchmark levels over time
and/or space. For example, a quality level range in a defined market for
defined types of people for a defined task during annual periods.

6. A range can describe a gap between a benchmark and a target (the gap
is the unfulfilled requirement).

7. A range can describe the change in attribute level as a result of carrying
out an Evo step.

Related Concepts: Landing Zone *605; Gap *359; Success Range;
Acceptable Range; Failure Range; Catastrophe Range.

Rationale Concept *259
A rationale is the reasoning or principle that explains and thus seeks to
justify a specification. ‘Rationale’ is a parameter for declaring
information that justifies a specification.
Notes:
1. The information can concern the logic, the politics, the economics or

whatever is of interest to declare in order to explain and justify a
specification.

2. The purposes of a rationale are:
. to answer questions that readers would ask of a specification
. to motivate and convince readers about a specification
. to set up information for risk analysis (is the given rationale true, and
will it be later?)

Survival
Level

Survival
Level

Survival
Level

Survival
Level

Fail
Level

Fail
Level

Goal
Level

Budget
Level

Catastrophe
Range

]]!!> > >+ >?>? >+

Failure
Range

Failure
Range

Acceptable
Range

Acceptable
Range

Success
Range

Success
Range

Numerous
Stretch, Wish
And Budget

Levels

Numerous
Stretch, Wish

And Goal
Levels

Resource Performance

[[

Figure G19
The ‘doughnut’ diagram indicating different range concepts.

398 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Example:
PGB: Goal [UK]: 99.9% <- Annual Plan.
Authority: Board of Directors, Jan 25th.
Rationale [PGB]: Competition in UK prior to new EU Laws about
competition.
Basis: Our long-range plan to be the <biggest> in all European
countries.
In the example above, the PGB tag is inserted to show how to tie any
Rationale statement to another specific statement or statements. This for-
mat can be used irrespective of where you specify the Rationale statement. It
does not have to be just below or in the immediate vicinity. The Authority
and Basis statements are implied to be related, because they are just below
the PGB statement.
Note. ‘Basis’ is quite different from Rationale. Rationale is a set of
conditions leading to a desire to make a specification. It explains how we
got to that specification. Basis is a specified set of assumptions that underlie
a specification. If the basis conditions are changed, then the specification
may no longer be valid.

‘‘Theirs is but to reason why: The value of recording rationale.’’
<-(Hooks and Farry 2000 Chapter 8)

Synonyms: Justification *259; Reason *259.
Related Concepts: Basis *006.
Historical Note: ‘Rationale’ is a term I found used by Synopsys, CA USA
1996.

Readership Concept *295
The readership (or intended readership) of a specification is all the
‘types of people’ we intend shall read or use the specification.
Notes:
1. The ‘readership’ should be explicitly stated within document header

information or other appropriate place. Experience has shown that
allowing people to guess what the intended readership is will lead
directly to not satisfying some important types of readers.

Rationale:
. It helps authors decide on document content and what terminology to
use. For example, which abbreviations and terms might be understood
or misunderstood.

. It also helps checkers decide if the writer has communicated clearly and
unambiguously with their intended audience.

Example:
Readership: {All Employees, Customers, Suppliers, Contractors, Audi-
tors}.
Synonyms: Intended Readership *295.

Record Concept *127
A Record parameter is used to inform us about an interesting extreme
of achievement. A Record specification states a benchmark level on a
defined Scale under specified conditions [time, place, event] for a
scalar attribute that represents an impressively good level, or state-of-
the-art.

Planguage Concept Glossary 399

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Example:
Usability:
Ambition: More user-friendly than <competitors’ products>.
Scale: Average Learning Time for Slowest Learners in User Population.
Trend [Main Competitor, Next Year]: 1 minute.
Record [Last Year, UK]: 2 minutes <- Industry Statistics [Last Year].
Fail [New Product, Next Year]: 50 seconds.
Goal [New Product, Anytime]: 20 seconds.
It is good practice to indicate the source (<-) of Record information (as with
all scalar level specifications).
Rationale: Record is usually specified to demonstrate that such a level is
technically possible under certain specified conditions, and to challenge us
to strive to avoid, approach, meet or beat that level, as appropriate.
Levels approaching state-of-the-art are useful to specify, because they tend
to be costly and high risk.
Synonyms: Record Level *127.
Related Concepts: Benchmark *007.
Keyed Icon: <<
‘‘The arrow points towards the ‘past’ as in the Past benchmark, ‘<’ but
doubled for emphasis to show that this is an extreme benchmark. Usually
used in the context of a scalar arrow (<---<<---O---<<--->).’’

Relationship Concept *142
A relationship is a connection between objects.
Related Concepts: Object *099; Interface *194; Hierarchical *083;
High-Level *082; Supra *264; Downstream *052; Upstream *291; Set
*133; Subset *222; Is Part of *621; Consists Of *616; Includes *391; Kin
*353; Sibling *265; Kid *266; Parent *267; Dependency *189: Syno-
nym is Depends On; Impacts *334; Is Impacted By *412; Is Supported
By *414; Supports *415.

Requirement Concept *026
A requirement is a stakeholder-desired, or needed, target or constraint.
Within Planguage, requirements specifically consist of vision, function
requirements, performance requirements, resource requirements,
condition constraints and design constraints.
Given below are some IEEE definitions:

Requirement: ‘‘a condition or capability needed by a user to solve a problem
or achieve an objective.’’

<- IEEE 610.12-1990.

Example of an IEEE definition of ‘requirement’: the term ‘user’ is probably not
broad enough to capture the scope of all stakeholders. Another danger of this
definition is that it inadvertently includes all designs, and so does not successfully
made a sufficiently clear distinction between requirement and design.

Requirements: ‘‘Statements, which identify the essential needs for a system in
order for it to have value and utility. Requirements may be derived or based
upon interpretation of stated requirements to assist in providing a common
understanding of the desired operational characteristics of a system.’’

<- IEEE P1220. IEEE Standard for Systems Engineering, Preliminary, 1993
in (SEI CMMI 1995).

400 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Example of an IEEE definition of ‘requirements’: better than the previous
1990 standard, as all designs are no longer ‘in the picture.’
Notes:
1. Stakeholders should determine their own requirements; they certainly

should be involved in discussions about the relative values, costs and
priorities of their requirements.
A systems engineer may be needed to specify the requirements in a
suitable way for use by systems engineering projects. Also, there may be
a need for building, aggregating and analyzing a set of project require-
ments across a range of disparate stakeholders.

2. Not all requirements initially specified are necessarily accepted for
actual delivery: some requirements may not ultimately be feasible or
economic. The key practical idea is to try to identify, and give priority
to, the most critical or most profitable stakeholder requirements.

3. A requirement is an input to a design process. Requirements give
information to the designer about the necessary nature of their design.
A design, whether a specification or an actual implementation, can be
judged (using such means as Specification Quality Control (SQC),
test, Impact Estimation tables, evolutionary step feedback, or opera-
tional use) in terms of how well it satisfies the requirements.

4. Requirements, at different levels of abstraction, can be viewed as inputs
to a defined level of design process. In a series of systems engineering
processes, one engineer’s output (‘design,’ ‘architecture’) may become
another engineer’s inputs or ‘requirements’. The conclusion of this is
that specifications, no matter what we name them, are requirements
only when they are used as input to such a systems engineering process.

Goal
*109

Budget
*480

Stretch
*404

Wish
*244

Fail
*098

Survival
*440

Stretch
*404

Wish
*244

Fail
*098

Survival
*440

Requirement *026

Vision
*422

Function
Requirement

*074

Performance
Requirement

*100 (objective)

Resource
Requirement

*431

Design
Constraint

*181

Condition
Constraint

*498

Function
Target
*420

Function
Constraint

*469

Performance
Constraint

*438

Performance
Target

*439 (goal)

Resource
Target

*436 (budget)

Resource
Constraint

*478

Mission
*097

Quality
 Requirement *453

Resource Saving
Requirement *622

Workload Capacity
Requirement *544

Figure G20
Requirement Concepts.

Planguage Concept Glossary 401

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

So, we need to explain a particular concept of ‘requirement’ by first
specifying the systems engineering process type, or level at which they
apply. For example, stakeholder value analysis, product line architec-
ture or component engineering.

5. Requirements can have different levels of priority. Priority is conveyed
in a variety of ways, for example:
. for scalar attributes, by stating any relevant constraint levels using
{Fail, Survival}

. for binary attributes, by stating any relevant constraints using Con-
straint parameters

. for scalar attributes, by setting relevant target levels using {Goal/
Budget, Stretch, Wish}

. by specifying different qualifier conditions for [time, place, event]
(Alternatively known as [when, where, if])

. by specifying other parameters, like Authority, Dependency, Priority
and Risk, which provide additional information

6. Requirements are usually assumed to be written in requirement specifica-
tions. However, many documents which have ‘requirements’ in their title
may contain little or no real requirements: it is unfortunately commonplace
to find a high content of design specification for unspecified or vaguely
specified requirements. Frequently, the most important, high-level
requirements are not stated clearly at all. You must be prepared to
look for requirements in other documentation and to ask questions.

7. A design idea is not usually a requirement at the same systems devel-
opment process level as the requirements it was designed to satisfy.
However, once a design idea is ‘fixed’ at a project development process
level, it becomes a ‘design constraint’ (which is a requirement type) for
the next level. In other words, a design idea usually becomes ‘valid as a
requirement’ at the next level of the development process, after the
level it was ‘designed.’ It is then a valid ‘requirement’ for all future
‘lower’ levels.
Example:
Usability:
Type: Quality Requirement.
Scale: Time to learn [defined Task].
Goal [By Initial Delivery, CW-Task]: 30 minutes. ‘‘A simple require-
ment goal.’’
CW-Task: Defined As: <mastering> <frequent tasks> at the
<standard workstation>.
Interface:
Type: Design Idea.
Specification: The computer terminal interface must look exactly like
our old one.
Impacts: Usability. ‘‘A design to meet the Usability requirement.’’
Usability is a strategic requirement. Interface is a design idea that we
hope will satisfy the planned level for Usability. Once adopted, Inter-
face is handed to others in the development process, such as estimators,
constructors and testers, and is then classed as a design constraint, at
this lower level.

Related Concepts: Requirement Specification *508; Need *599; Problem
Definition *598; Problem *270; Target *048; Constraint *218; Stake-
holder *233; Objective *100.

402 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Requirements Engineering Concept *614
Requirements Engineering is a requirements process carried out with an
engineering level of rigor. Requirements Engineering includes all
aspects of requirements gathering and maintenance, including but
not limited to:
. requirements solicitation (including stakeholder analysis)
. requirements analysis
. requirements quality control
. requirements review
. requirements change management
. requirements specification (the process)
. contracting and bidding requirements
. requirements risk analysis
. requirements priority analysis.
Synonyms: Requirement Engineering *614.
Related Concepts: Requirement *026; Requirement Specification
[Process] *634.

Requirement Specification [Specification] Concept *508
A requirement specification is a defined a set of requirements. It also
includes any relevant requirement background, such as benchmarks,
and also any appropriate commentary.
Note:
1. A requirement specification is the output of a requirement specifica-

tion process, which is a subset of a requirement engineering process.
Template: Requirement Specification Template.
Synonyms: Requirements Specification *508.
Related Concepts: Requirements Engineering *614; Requirement Speci-
fication [Process] *634; Requirement *026; Specification *137; Com-
mentary *632; Background *507; Core Specification *633.

Resource Concept *199
A resource is any potential system input. A resource is any kind of input
‘fuel’ necessary for building, operating or maintaining a given system.
A resource is an asset or a supply that can be used to produce the
functionality or performance levels of a system.
A resource can be defined using a scale of measure. A requirement for
a resource can be specified by a target or a constraint level. Previous
levels of resource utilization (costs) can be specified by benchmark
levels, like Past.
We can distinguish between budgeted and unbudgeted resources.
Resource budgets are found in our formal plans.
Notes:
1. The emphasis is on the concept of ‘potential ’ resource. A potential

resource is the total resource that might theoretically be consumed,
used, applied or produced. This is in contrast to a level of that resource
that we plan to use, called a Budget (a resource target).

2. We should not plan to use more than the resource actually available at
any point in time, place or circumstances. However, when one type of
resource is unavailable, we can consider the possibility of employing
another resource to achieve our aims; this is one kind of tradeoff. The
classic example is ‘time versus money.’

Planguage Concept Glossary 403

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

3. Resources must be viewed with regard to the ‘total potential resource
available – now and later,’ under the defined conditions. For example:
‘in our divisional budget,’ ‘within the market window’ or ‘by the
contract handover deadline.’

4. When you plan to limit the use of specific resources, you do so by
setting a resource target (for example, ‘Budget: 62 million.’) or a
resource constraint (for example, ‘Survival: 62.2 million.’).
You might also specify a global or policy constraint (see example below).
Example:
Innovation Constraint [Division A]:
Type: Constraint [Financial Resource].
Scale: % of the annual research budget.
Goal: 20%.
Authority: Divisional Manager.

5. Resources that are input to a system differ from resource savings.
Resources consumed are the costs of developing and operating a
system. A resource saving is a relative reduction in consumption of a
resource once a system is operational. For example, systems engineer-
ing effort as an input resource can be applied to save system user
learning time (a resource saving).

6. Common usage of the term ‘resource’ in the United States (USA) is to
mean ‘people.’ The Planguage definition is far wider than this.

Related Concepts: Resource Requirement *431; Resource Target *436;
Resource Constraint *478; Benchmark *007; Target *489; Constraint
*218; Cost *033; Resource Saving *429.
Keyed Icon: --->O ‘‘A scalar attribute arrow into a function oval. A
simplified alternative is ‘–O’.’’

Resource Constraint Concept *478
A resource constraint is a resource requirement, which specifically
restricts, or serves as a warning about, the level that can be used of a
resource.

Function

Resource
Time

Effort

Money

Space

Other

Data

Figure G21
Arbitrary examples of some system resources.

404 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

A resource constraint is specified as a scalar resource attribute level. It
signals the level at which some degree of system failure will be
experienced or the level at which the entire system becomes
threatened.
Two main parameters can be used to specify these constraint levels:
Fail (Fail and worse might be recoverable) and Survival (worse is
unrecoverable).
Notes:
1. Resource constraints are imposed or suggested by defined stakeholders.

These stakeholders and their reasons should be explicitly documented
with the constraint level, for example, by using Authority, Source,
Rationale or Stakeholder parameters.

2. The Fail and Survival concepts are adequate for most scalar constraint
purposes. However, Catastrophe is also available for use. It is a matter
of taste.

Related Concepts: Constraint *218; Performance Constraint *438;
Resource Target *436; Fail *098; Survival *440; Catastrophe *602;
Range *552: See Failure Range and Catastrophe Range.
Example:
Memory Space:
Type: Resource.
Scale: Gigabytes of defined [Memory Component].
======================== Targets =======================
Wish [Memory Component¼Online Backup]: 1,000 Gb <- Design
Team.
Rationale: Improves Recovery Speed.
Stretch [Memory Component¼Online Storage, US Market]: 500 Gb?
<- Marketing.
Budget [Memory Component¼Primary]: 100 Gb <- Initial Software
Size Estimates.
=======================Constraints ======================
Fail [Memory Component¼Online Storage, US Market]: 250 Gb Or
Less? <- Marketing.
Rationale: Large Scale Users must have this level <- US Sales.
Survival [Memory Component¼Online Storage, US Market]: 100 Gb?
<- Marketing.
Rationale: Nobody would even consider our system with less <- US
Sales.
Some examples of Resource Constraint specification.

Resource Requirement Concept *431
A resource requirement specifies how much of a resource should be
made available for later consumption. A resource requirement is a
scalar attribute with one or more resource targets and/or resource
constraints specified.
Example:
Maintenance Expenditure:
Scale: Million 6 annually.
Budget [First Four Years Average]: 3 million 6.
Fail [Any Single Operational Year]: 4 million 6 <- Client limit in
contract §6.8.

Planguage Concept Glossary 405

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Example:
Development Effort:
Scale: Engineering Hours applied to the contract.
Wish [Europe Release]: 10,000 hours <- Project Manager.
Survival [All Releases]: 30,000 hours <- Maximum corporate availabil-
ity by deadline.
An example showing a resource target and a resource constraint specified for
each resource requirement.
Related Concepts: Resource *199; Resource Target *436; Resource Con-
straint *478.

Resource Saving Concept *429
A resource saving is a performance attribute of a system. It expresses
‘how much’ better the system currently performs in terms of resources
than it did at some previous benchmark time.
For example, a resource saving can express how much less resource in
training effort or maintenance cost is needed in one system compared
to another. This measure can be used for benchmarking or for setting
requirements, or even for reporting on progress in design or actual
measured implementation of new systems.
Synonyms: Saving *429.
Related Concepts: Performance *434; Quality *125; Workload Capacity
*459; Resource Saving Requirement *622.

Resource Target Concept *436
A resource target is a budget. It is a scalar requirement; a resource level
we aim, or might possibly aim, towards keeping within while working
towards achieving the other requirements.
Three parameters are used to specify resource targets {Budget, Stretch
and Wish}. A Budget level is the primary resource target type. A Stretch
level represents a resource target that is not committed, but is a level for
challenge andmotivation. TheWish level represents a resource level that
would have value to some stakeholder, but again is not committed.
Resource targets represent the reasonable, perhaps profitable, levels of
cost, we must expect to pay to reach our performance and function
targets within any constraints. They differ from resource constraints,
which are the levels that signal problems, danger or lack of
profitability. We do not plan and design to merely stay within resource
constraints, but to avoid going anywhere near them at all!
Example:
Memory Space:
Scale: Gigabytes of defined [Memory Component].
Wish [Memory Component¼Online Backup]: 1,000 Gb <- Design
Team.
Rationale: Improves Recovery Speed.
Stretch [Memory Component¼Online Storage, US Market]: 500 Gb?
<- Marketing.
Budget [Memory Component¼Primary]: 100 Gb <- Initial Software
Size Estimates.
Synonyms: budget *436 (with a small ‘b’ to distinguish it from the
parameter, ‘Budget’).

406 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Related Concepts: Budget *480; Resource *199; Target *048; Wish
*244; Stretch *404; Resource Constraint *478; Resource Requirement
*431; Requirement *026.

Result Cycle Concept *122
Within Evo, a result cycle is an entire Evo step cycle aimed at delivering
a result that moves towards satisfying the overall requirements.
Notes:
1. A result cycle is a cycle consisting of ‘Plan-Do-Study-Act’ activities.
2. It can involve any kind of system change, small or large: for example,

factory production modification, software program alteration, organi-
zational restructure, new software product development and design of
new businesses.

3. A project using Evo will execute numerous result cycles. The emphasis
is on ‘contact with reality’ and using consequent feedback to adjust.

4. A result cycle consists of:
. a strategic management cycle: A strategic management cycle is con-
cerned with controlling and monitoring the overall change process.
Amongst other things, a strategic management cycle approves
proposed changes against strategic objectives and adopted high-level
strategies. It co-ordinates with other programs and projects. It
acquires development budgets. It analyzes feedback measurements.
It decides the next step.

. an implementation cycle: Implementation means ‘taking a plan, or
an idea, and turning it into reality.’ An implementation cycle con-
sisting of the following sub-cycles:
– a development cycle: This is an optional backroom cycle con-
cerned with acquiring/purchasing and developing, any products
required for the production and/or delivery cycles. For example,
any new systems development would be carried out within this
cycle.

– a production cycle: This is an optional backroom cycle concerned
with product integration, or manufacturing and distribution of
any products required for the delivery cycle.

– a delivery cycle: This is the actual delivery of the deliverable to the
use. In other words, a delivery cycle contains the initial opera-
tional implementation of an Evo step, and its handover to stake-
holders. It involves implementation activities such as training,
installation and field-testing. The type and size of system change
involved in a delivery cycle can vary, but is usually subject to
project-defined step constraints on resource utilization. Usually,
both financial cost and delivery frequency must be between 2%
and 5% of project total budgets for cost and time respectively.

5. Result cycles, for different steps, can be executed serially and in parallel.
The reason for this is the variable times taken for implementation
(specifically development and production cycles) and the Evo require-
ment to achieve a reasonably short delivery cycle frequency. For example,
the average delivery cycle frequency could be stipulated to be weekly or
monthly, but a specific result might take six months from initiation to
actual result delivery, due to such factors as research cycles, order cycles,
construction cycles and approval processes. These processes would nor-
mally be sought to be done in parallel with other Evo cycle activities, so

Planguage Concept Glossary 407

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

that the Evo management team and their stakeholders would still experi-
ence some result delivery within the stipulated delivery cycle time.

6. The development and production cycles are termed ‘backroom’ activ-
ities and the delivery cycle is termed a ‘frontroom’ activity. One useful
analogy is to think of the way in which a restaurant delivers to its
customers. Ideally, delivery to the table is independent of food and
drink preparation times!

Synonyms: Result Production Cycle; Step Cycle.
Related Concepts: Delivery Cycle *049; Development Cycle *413;
Implementation Cycle *123; Production Cycle *407; Strategic Manage-
ment Cycle *408.

Review Concept *197
A review is any process of human examination of ideas with a defined
purpose and defined standards of inquiry.
Notes:
1. A ‘go/no-go review’ is a particular type of review for giving approval,

or not, to a particular plan or idea.
2. Reviews should always have the benefit of the specification under

review having successfully exited SQC processes using both
Specification Rules and Specification Review Rules. Such SQC
processes determine a specification’s objective craftsmanship quality
(conformance to standards). For example, a major review with

Result Cycle

Strategic
Management

Cycle

Development
Cycle

Production
Cycle

Delivery
Cycle

Implementation Cycle

Figure G22
Diagram shows the component cycles of a Result Cycle.

Self-Check or
Buddy Check of
Specification [1]

Review
[4]

SQC using
Specification

Review Rules [3]

SQC using
Specification

Rules [2]

Figure G23
The diagram shows Review following SQC processes. The sequence of SQC processes
leading to review(s) is as follows:
. Before any SQC is carried out, informal checking might be carried out by the specifica-
tion writer or by a colleague [1]

. SQC (a more formal team process) is carried out by a group of people checking the
specification against specification rules [2]

. If successfully SQC exited, further SQC can be carried out using specification review
rules. This is to check the validity of entering a review process by carrying out a number of
pre-checks using the relevant review criteria (types of review include Architecture
Review and Business Review.) [3]

. If successfully SQC exited, a review can be carried out to decide on future actions [4].

408 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

financial consequences should not proceed if the estimated remaining
major defects/page for a specification are, at entry, any greater than
1.0.

Related Concepts: Specification Quality Control (SQC) *051; Specifica-
tion Rules *129; Specification Review Rules *543.

Risk Concept *309
A risk is any factor that could result in a future negative consequence.
A Risk parameter can be used to specify known risks.
Notes:
1. Negative results are results that are worse than required, planned, or

expected.
2. Examples of risk factors include:

. lack of information about a design idea

. inappropriate information about a design idea.
Source: See Bernstein’s book on the history of risk (Bernstein 1996). One
prominent economist (Knight) wanted to distinguish risk from uncer-
tainty, in the sense that risk was measurable (Bernstein 1996, Page 219).
Knight was also skeptical as to whether past data was sufficiently like a
specific unique instance, and sufficiently detailed, to tell us what the
probability of a future event would be.
Synonyms: Threat *309.
Related Concepts: Uncertainty *310; Safety Factor *131.

Role Concept *253
A role is a defined responsibility, interest or scope for people.
Related Concepts: Role [SQC] *411; Stakeholder *233.

Rule Concept *333
A rule is any statement of a standard on how to write or carry out some
part of a systems engineering or business process.

Standards

Glossary
Concepts Policies

Other
Specification

Rules

Evo
Specification

Rules
(Rules.Evo)

Design
Specification

Rules
(Rules.DS)

Requirement
Specification

Rules
(Rules.RS)

Generic
Specification

Rules
(Rules.GS)

Rules Processes Templates Other
Standards

Specification Rules Specification Review Rules Other
Rules

Figure G24
Rules as standards. Some of the different types of Specification Rules are shown.

Planguage Concept Glossary 409

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Notes:
1. Numerous different types of rule exist, including business rules, system

rules and design rules.
Related Concepts: Standard *138; Specification Rule *129; Specification
Review Rule *543.

Safety Deviation Concept *405
A safety deviation is a measure of the estimated-or-observed
difference between a required safety margin, and the estimated or
actual system attribute level. ‘How safe?’ or ‘How safe compared to
plan?’
Notes:
1. Each scalar attribute target (performance goals and resource

budgets) will potentially have its own computable value for safety
deviation.

2. Safety deviation expresses how far away the current design proposal, or
Evo step implementation, is estimated to be from the desired safety
level. The higher the negative deviation is, the greater the ‘risk of
failure’ to deliver the target level of the attribute.

3. The safety deviation can be use by technical management to monitor the
progress of a design or a real evolving project delivery. Management will
need some policy regarding setting and respecting safety factors. They will
need to set some standards regarding the degree to which designs include
planned safety factors. This is a specific tactic for risk management.

4. When using the Impact Estimation method and a spreadsheet model,
the safety deviation computations can normally be done automatically
using the values of the requirements and the design impacts. Auto-
matic warning of insufficient safety is a possibility.

Related Concepts: Safety Factor *131; Safety Margin *637.

Performance
Attribute

Scale

Scale Impact

Worst Case Impact Best Case Impact

Negative Uncertainty Positive Uncertainty

Baseline
0%

Target
100%

Required Safety Margin 50%
(Required Safety Factor of 1.5)

2x x

Safety Deviation

60 – 150 = –90%

Percentage
Impact 60%

Safety Level

Actual Safety Margin –40%
(Actual Safety Factor 0.6)

Figure G25
Diagram showing calculation of Safety Deviation for a quality objective. The safety margin
is relative to the target level and the distance between the baseline and the target. In this
example, as the required safety margin is 50%, it must be 50% beyond the target level. The
distance (x) is worked out from the distance between the target and the baseline (2x).

410 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Safety Factor Concept *131
A safety factor is the dimensionless ratio of ‘conscious over-design’ that
is either required, or actually applied to some part of a system.
Notes:
1. A safety factor is used to communicate about risk. It is used to ensure

that the design compensates adequately for both systems engineering
and operational uncertainties.

2. Historically, safety factors were applied to mechanical loads. We are
using it here to describe the amount of safety margin we wish to have
designed into the system. The target and constraint levels are specified
at the required levels and then the safety factor is applied to allow
safety margins. (An assumption is being made here that there is only
one safety factor involved; there could be several.)

3. A safety factor is either prescribed by standards, such as engineering
rules or policy, or it is specified at project level.

4. A safety factor is a dimensionless ratio. Compare to a safety margin,
which is either expressed using units of measure (as it is the difference
between two levels on a Scale), or as a percentage value based on the
required target or constraint level being 100%.
Example:

This example assumes no specific safety factor has been set. It calculates the
estimated/actual safety factor and safety margin based on the required level
being 100%.

5. If we want to explicitly specify a safety factor, we can do so in a variety
of ways using the Safety Factor parameter.

Synonyms: Safety *131.
Related Concepts: Safety Deviation *405; Safety Margin *637.
Keyed Icon: nX ‘‘Where n is the numeric safety factor.’’

Example:
Safety Factor: 3X.

Safety Margin Concept *637
A required safety margin is a scalar difference between a required
defined target or constraint level, and its calculated safety level
derived using the appropriate safety factor.
Notes:
1. An estimated or actual safety margin can also be calculated. If no

specific required safety factor is specified then the safety margin can
be calculated relative to the (estimated or actual) target or constraint
level (100%, equivalent to a safety factor of 1).

2. A safety margin can also be expressed as a percentage based on the
target or constraint level being 100%, and the baseline being 0%.

Required Level Estimated/Actual
Level

Estimated/Actual
Safety Factor

Estimated/Actual
Safety Margin

100% 100% 1 0%

100% 50% 0.5 "50%

100% 200% 2 100%

Planguage Concept Glossary 411

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

3. A ‘safety factor’, by comparison, is a dimensionless ratio.
Related Concepts: Safety Factor *131; Safety Deviation *405.

Scalar Concept *198
Scalar is an adjective used to describe objects, which possess or are
measured using at least one scale of measure.
Notes:
1. Performance and resource attributes are scalar.
2. Scalar attributes, provided they are not elementary (one Scale only),

can have numerous scales of measure (A complex scalar attribute will
possess more than one elementary attribute.)

3. All numeric levels on scales of measure can be described as scalar
values.

4. A scalar object can be contrasted to a binary object, which is not
scalar, but is in one of two states (commonly, either present or
absent).

Related Concepts: Scale *132; Binary *249.

Scale Concept *132
A ‘Scale’ parameter is used to define a scale of measure. All
elementary scalar attribute definitions require a defined Scale.
A Scale states the fundamental and precise operational definition for a
specific scalar attribute. It is used as the basis for expressing many of the
parameters within the scalar attribute definition (for example, Meter,
Goal and Budget): all scalar estimates or measurements are made with
reference to the Scale. The Scale states the units of measurement, and
any required scalar qualifiers.
Notes:
1. A Scale is not a numeric level along the defined Scale (it is not a

benchmark, target or constraint).
2. A Scale is not the measuring instrument (that is specified by the Meter

parameter).
A Scale describes something, which is variable, trackable, observable
and countable in nature. A Meter specification is the definition of the

Past
Baseline

0%
B

Impact
Estimate

E

Actual
Measure

A

Required
Level

(Target or
Constraint)

100%
R

Safety
Level

S

Gap to Required Level
(Estimated)

Actual Change in Scalar Level

Estimated Change
 in Scalar Level

Required Change in Scalar Level Required Safety Margin
(Calculated using Safety Factor

set by policy/rules)

Planned Change in Scalar Level used for Design Purposes

Actual Gap (Measured)

412 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

means of measuring the ‘level of capability’ expressed by a Scale. For
example, a Meter is the ‘voltmeter’ for measuring on a Scale of ‘volts.’
A Scale is abstract, while a Meter is a real-world, practical means of
obtaining measurements. A specific Meter itself has multiple perform-
ance and cost attributes. These are the basis for selecting a particular
Meter.
There is a big distinction between units of measure (Scale) and a
measuring tool (Meter or Test). Units of measure can be used to
express clear ideas, like requirements, quite independently of the
possibilities and problems of measurement itself. I can express a clear
idea, ‘‘I want to get to the moon and back in one second,’’ quite clearly.
The fact that I cannot really do it, or measure it, is beside the point. I
stress this because I have discovered that many people waste their
energy arguing against a particular quantification, when all their argu-
ments are only related to the difficulty of its accurate measurement.

3. Many Scales are specified as ‘generic scales.’ A generic scale is a Scale
that requires final specification of ‘scale qualifiers’ (in the Scale defin-
ition) by means of ‘scale variables’ (in a target or constraint specifica-
tion), in order to have an operationally precise definition.
Example:
Scale: Time to Master defined [Tasks] by defined [Learner Type].
There are two scale qualifiers in the above generic scale definition, which
require definition by scale variables. For example, ‘Goal [Tasks¼Update,
Learner Type¼Novice]: 30%’.

‘‘To leave [soft considerations] out of the analysis simply because they are
not readily quantifiable or to avoid introducing ‘personal judgments,’
clearly biases decisions against investments that are likely to have a sig-
nificant impact on considerations as the quality of one’s product, delivery
speed and reliability, and the rapidity with which new products can be
introduced.’’
<- R. H. Hayes et al. Dynamic Manufacturing, Free Press 1988 NY Page 77,

quoted in Mintzberg (1994 Page 124)
‘‘Aligning Rewards with Measurements ‘You have to get this one right. . . . a
universal problem: What you measure is what you get – what you reward is
what you get. Static measurements get stale. Market conditions change,
new businesses develop, new competitors show up. I always pounded home
the question ‘Are we measuring and rewarding the specific behavior we
want?’’’

<- Jack Welch, former CEO General Electric (Welch 2001 Page 387)

Synonyms: Scale of Measure *132.
Related Concepts: Scale Qualifier *381; Scale Variable *446; Meter *094.
Keyed Icon: -|-|-

Scale Impact Concept *403
For a scalar requirement, a scale impact is an absolute numeric value on
the scale of measure. It can be an estimated value, or actually
achieved, measured value. It is the level estimated or achieved if a
specified design idea (or set of design ideas or Evo step) is implemented.
Notes:
1. In an Impact Estimation table, Scale Impact is customarily used together

with Percentage Impact, as alternative views of the impact estimate. We
use Scale Impact when we just want to know the real final result, which

Planguage Concept Glossary 413

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

includes the effects of implementing all previous designs. We use Per-
centage Impact when we want to understand the effect in relation to
moving from the baseline towards the goal. In other words, Scale Impact
is an absolute numeric value, while Percentage Impact is a relative value
dependent on the Scale Impact, and the Baseline to Target Pair.

2. Care has to be taken, as the impact of a design idea varies, depending
on the system technology it is added to and used in. In other words,
the impact of a design idea is not a constant, irrespective of the
circumstances it is implemented in. There can be dependencies and
interactions. Altering the order of implementing design ideas could
affect the immediate level of impact of any specific design idea.
However, given that the choice is usually just ‘what shall we implement
next on a specific system?’ it is not necessary to assess the impacts of all
the valid design idea combinations.

Synonyms: Absolute Impact *403.
Related Concepts: Incremental Scale Impact *307; Percentage Impact *306.

Scale Qualifier Concept *381
A scale qualifier is a term within the definition of a Scale parameter. It
specifies the need for a qualifier condition with an assigned scale
variable to be specified when referencing or applying the Scale in
another statement. For a given Scale, any useful number of scale
qualifiers can be defined.

Example:
Scale: Time to learn a defined [Task]. ‘‘Task is a scale qualifier.’’
Scale qualifiers are generic; each scale qualifier needs to be explicitly assigned a
corresponding ‘scale variable’ (unless a default is being used) when the Scale is
used in other parameter statements (such as any benchmarks or targets).

Example:
Goal [Task¼ Setup]: 10 minutes. ‘‘Setup is a scale variable defining the
scale qualifier, Task that was defined in the previous example.’’
The purpose of scale qualifiers is to allow a scale specification to be more
generalized and flexible; this consequently makes a scale specification
more reusable.
Notes:
1. A scale qualifier is expressed and specified by enclosing the qualifier

condition in square qualifier brackets. The word ‘defined’ is optionally

Incremental
Scale Impact Objective

Scale

Absolute
Values

Percentage
Values

0% Percentage Impact (%) 100%

Scale ImpactBaseline Target

Figure G26

414 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

specified immediately prior to the square brackets, to help emphasize
that a more specific definition needs to be provided when the Scale is
referenced, for example by a Goal statement.
Example:
Scale: The defined [Time Units] needed to do a defined [Task] by a
defined [Employee Type].

2. A default option can be specified in order to make explicit specification
unnecessary.
Example:
Scale: The defined [Time Units: Default¼Hours] needed to do a
defined [Task] by a defined [Employee Type].

3. The scale qualifier parameter can also be ‘referenced’ by using the same
sequence as used in the scale definition: Note in this example, an
additional qualifier condition, not in the original scale definition, has
been added. This is OK. You can add any number of additional
conditions that you want.
Example:
Scale: The defined [Time Units] needed to do a defined [Task] by a
defined [Employee Type].
Goal [Hours, Answering Help Desk Queries, Experienced, Country¼
Finland]: 60 Hours.
Or, an explicit reference to the scale qualifier tag (‘Time Units¼
Hours’) may be made, for increased clarity.
Example:
Scale: The defined [Time Units] needed to do a defined [Task] by a
defined [Employee Type].
Past [Time Units¼Months, Task¼Complaint Handling, Employee
Type¼ Supervisor]: 6 Months.

4. The sequencing of scale qualifiers and scale variables is not
critical as long as the parameters are unambiguous to the specifi-
cation user.

Synonyms: Scale Parameter *381; Embedded Scale Qualifier *381.
Related Concepts: Qualifier *124; Scale Variable *446.

Scale Uncertainty Concept *143
A scale uncertainty is an estimate of the error margins for a specific scale
impact (that is, it provides information about the plus-and-minus range
on the scale of measure over which an estimate for a scale impact can
possibly vary). It allows calculation of the best and worst case borders.
Notes:
1. Experience data should be used for guidance, and specified as evidence

together with its source(s).
2. In some cases, the error margins may not be symmetrical about the

main estimate. It may be appropriate to use only the more extreme
uncertainty value, or to specify the asymmetry directly using the two
different numbers (for example, þ30% and "40%).

Related Concepts: Scale Impact *403.

Scale Variable Concept *446
A scale variable is the specific term assigned to ‘finally’ define a
qualifier condition for a scale qualifier.

Planguage Concept Glossary 415

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

If we fail to explicitly define a scale variable in a particular statement
and there is a defined default scale variable, then the defined default
(. . . for defined [Tasks: Default¼Update] . . .) will be assumed to be the
intended scale variable for that statement. If there is no default
defined, then the statement, in this instance, is defective.
Example:
Responsiveness:
Scale: Number of Days after a defined [Day] until enquiries answered.
Goal [Day¼Monday]: 3.
‘Day’ is the scale qualifier. Monday is a constant, assigned as the relevant
scale variable, out of the set of the possible days of the week.

Example:
Excess Speed:
Scale: Kilometers per hour in excess of the defined [Maximum Speed:
Default¼ Posted Legal Limit Speed].
Fail [Maximum Speed¼ 80]: 0 Kilometers per hour.
You would have to finally determine the definition in real driving condi-
tions.

Example:
Scale: The time needed for a defined [Task] by defined [People] in
defined [Places].
Goal [Update, Naval Officer, At Sea]: 20 minutes.
Or, alternatively, using explicit references to the scale qualifiers,
(Task¼ . . .).
Goal [Task¼Update, People¼Naval Officer, Places¼At Sea]: 20 minutes.
‘Update’, ‘Naval Officer’, and ‘At Sea’ are scale variables, defining one of the
three scale qualifiers (Task, People and Places). The scale variables are also
specification variables because we don’t really know what they mean until we
look at their definition. For example, what if ‘At Sea: Defined As: In any craft
which floats on any type of water’? Does that include wooden model boats in a
small pond?
Related Concepts: Scale Qualifier *381; Specification Variable *456.

Scope Concept *419
A ‘Scope’ describes the extent of influence of something. Scope can
apply to anything, like a specification, or a specified system or project.
The ‘extent of influence’ can be described in any useful terms. This
includes using any Planguage expressions or parameters. For
example, any [time, place, event] qualifier conditions, and any other
parameters, such as ‘Stakeholders’, can define the extent of influence
of a specific specification within the system scope.
Notes:
1. There are two especially useful notions of scope:

. Global Scope: global scope specifications (potentially) influence or dic-
tate something (like a constraint) to all areas of a defined system, unless
some overriding or higher-priority specification cancels its influence. For
example, ‘Project Scope’ (Hooks and Farry 2000 Pages 43–58).

. Local Scope: a local specification is unable and unwilling to influ-
ence or determine specifications (such as requirements and designs)
beyond a defined sub-system area.

416 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Related Concepts: View *484; Context *483; Qualifier *124; Time
*153; Place *107; Event *062.
Example:
Scope [Project X]: USA Parent Market only.
An example of an explicit Scope specification: Scope can otherwise be
indicated by a qualifier and by many other parameters (such as Authority
for example).

Side Effect Concept *273
An impact by a design idea, on any requirement attribute, other than
the direct impact(s) we primarily intended.
Notes:
1. Side effects can be evaluated at a design stage and/or observed at an

implementation stage, or even operational or decommissioning stage.
Conventional usage of ‘side effect’ implies ‘negative effects,’ but posi-
tive side effects can be just as likely, and just as interesting!

2. Side effects can be of the following categories:
. ‘Intended or unintended’: ‘Intended’ means that we have chosen the
design because we knew about and valued those particular side effects;

. ‘Known or unknown’: ‘Known’ means we were aware of the exist-
ence and possibly the levels of the side effects. ‘Unknown’ means we
were not initially aware of the side effects, but may have become
aware of them at some later stage of considering the design (such as
in testing, in a review or in operation);

. ‘Negative, neutral or positive’.
Related Concepts: Impacts *334: This parameter is used to specify side
effects.

Software Engineering Concept *572
Software engineering is the discipline of making software systems
deliver the required value to all stakeholders.
Notes:
1. Software engineering includes determining stakeholder requirements,

designing new systems, adapting older systems, subcontracting for
components (including services), interfacing with systems architecture,
testing, measurement and other disciplines. It needs to control com-
puter programming and other software related sub-processes (like
quality assurance, requirements elicitation, requirement specification),
but it is not necessary that these sub-disciplines be carried out by the
software engineering process itself. The emphasis should be on control
of the outcome – the value delivered to stakeholders, not of the
performance of a craft.

2. The concept ‘required value’ (above) is used to emphasize the obliga-
tion of the software engineer to determine the value or results truly
needed by the stakeholders, and not to be fooled by omissions,
corruptions and misunderstandings of the real-world value.

3. The concept ‘all stakeholders’ (above) is used to emphasize the broad
range of internal stakeholders (like the development project and the
producing organization), and external stakeholders (such as users,

Planguage Concept Glossary 417

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

customers, governments, add-on suppliers) that the software engineer-
ing process must be obliged to deal with. We are consciously trying to
break away from older, narrower notions that software engineering is
all about satisfying users or customers alone.

Related Concepts: Software *570; Engineering *224; Systems Engineer-
ing *223; Stakeholder *233; Value *269.

Source Concept *135
‘Source’ is a synonym for process input information (as opposed to
process input materials).
Notes:
1. Source specifications used in SQC, are contained in documents that

are usually of earlier production, and probably at higher levels of
authority, global scope and abstraction. For example: contracts
are sources for requirements. Requirements are a source for
design. Requirements and design are sources for Impact Estimation.
Design is source for planning and construction or programming.
Older specifications and change requests are sources for updated
specifications.

Related Concepts: Evidence *063.
Keyed Icon:

Specification Concept *137
A ‘specification’ communicates one or more system ideas and/or
descriptions to an intended audience. A specification is usually a
formal, written means for communicating information.
Notes:
1. A specification is usually written, but it could be oral.
2. The term ‘specification’ can refer to a single element of a larger

specification or to a larger set of specifications. It includes the entire
set of parameters and lines of text needed to specify an idea.

3. The specification concept can deal with past, present and future; it is
not confined to requirement or design specification.

4. There are many classes of ‘specification’ including {requirements,
design analysis (such as Impact Estimation tables), and project plans
(such as Evo plans)}.

5. ‘Specification’ can be described as a class of document that is used to
control the outcome of a project.

6. The term ‘specification’ is often specifically intended to refer to project
specifications, sometimes popularly called ‘specs.’

7. Specification can be categorized as Commentary or Non-Commen-
tary. Non-Commentary consists of Core Specification and Back-
ground Specification. This categorization recognizes the significance
of the specification content. For SQC purposes, it is important to
make this distinction, as finding major defects in the Core Specifica-
tion is the key task.

Abbreviations: Spec.
Related Concepts: Definition *044; Description *416; Documentation
*579; Document *180; Planguage Concept *188; Commentary *632;
Non-Commentary *294; Background *507; Core Specification *633.

418 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Specification Quality Control Concept *051
Specification Quality Control (SQC) is a rigorous specification quality
control discipline. SQC is concerned with defect detection, defect
measurement, defect removal, process improvement and entry/exit
controls. It is based on evaluating specification conformance to
specification rules.
Notes:
1. During SQC, specifications are checked against their relevant rules, sources

and kin documents for validity. Any rule violations are defects. The density
of defects is used to judge the ‘quality’ of craftsmanship of the specification.

2. SQC includes the Defect Detection Process (DDP) and the Defect
Prevention Process (DPP). Both are defined in detail in (Gilb and
Graham 1993). When the DPP (process improvement) is used the
scope goes beyond quality control and extends to quality assurance.

3. Traditionally, SQC does not pretend to judge the specifications in
terms of their relevance or profitability in the real world. It is
primarily concerned with making sure that the specifications are
clear, complete and consistent by checking a specification and any
of its source and kin documents against Specification Rules. It judges
whether the specification is suitable to be used in subsequent engi-
neering or management processes. However, by using a different
type of rules, Specification Review Rules, it is possible to extend
the SQC process to checking the readiness of specifications for
review. This could be for a business review or a technical review.
See Review *197.

Specification
*137

Requirement
Specification

*508

Design
Specification

*586

Problem
Definition

*598

Evo Plan
*322

Problem
*270

Need
*599

Target
*048

Constraint
*218

Evo
Step
*141

Impact
Estimate

*433

Gap
*359

Benchmark
*007

Design
Idea
*047

Impact
Estimation
Table *638

Documentation

‘Design Concepts’
and Measures

Impact
*087

Evo Step
Specification

*370

Iteration

Figure G27
Different kinds of specification.

Planguage Concept Glossary 419

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Description: Chapter 8, ‘‘Specification Quality Control: How to Know
How Well You Specified.’’
Acronym: SQC *051.
Synonyms: Inspection *051; Peer Review *051; ‘‘For additional specia-
lized synonyms, see (Wheeler, Brykcznski and Meeson 1996).’’
Related Concepts: Quality Control *279; Specification Defect *043;
Specification Rule *129; Specification Review Rule *543;
Review *197.

SQC Concept *051
Acronym for ‘Specification Quality Control’.

Stakeholder Concept *233
A stakeholder is any person, group or object, which has some direct or
indirect interest in a system. Stakeholders can exercise control over both
the immediate system operational characteristics, as well as over long-
term system lifecycle considerations (such as portability, lifecycle costs,
environmental considerations and decommissioning of the system).
The parameter ‘Stakeholder’ can be used to specify one or more
stakeholders explicitly. We can attach stakeholder information to any
elementary specification, or to a set of specifications, as appropriate.

‘‘4.16 Stakeholder: An interested party having a right, share or claim in the
system or in its possession of qualities that meet their needs.’’

Draft Standard ISO/IEC 15288 (ISO/IEC 1999)

People and Technology Management Process

T
ec

hn
ol

og
y,

 P
ro

ce
ss

an
d

P
eo

pl
e

ro
ad

m
ap

s

Product Creation Process

Customer

Customer Oriented Process
Policy and

Planning Process

presales sales logistics production service
material

B
ud

ge
ts

C
us

to
m

er
R

oa
dm

ap

B
us

in
es

s
D

riv
er

s
P

ro
du

ct
ro

ad
m

ap

B
ud

ge
t,

pl
an

P
ro

du
ct

 R
eq

ui
re

m
en

ts
an

d
fe

ed
ba

ck

R
eq

ui
re

m
en

ts
an

d
F

ee
db

ac
k

T
ec

hn
ic

al
P

ro
du

ct
D

oc
um

en
ta

tio
n

P
ro

du
ct

 r
el

at
ed

pr
oc

es
se

s

In
fo

rm
at

io
n

O
rd

er

P
ro

du
ct

S
up

po
rt

P
eo

pl
e

T
ec

hn
ol

og
y

P
ro

ce
ss

P
eo

pl
e

T
ec

hn
ol

og
y

P
ro

ce
ss

$$

$$

• •

Figure G28
Some stakeholder concepts. Courtesy Gerrit Muller, Philips, Eindhoven, NL. (Muller 1999).

420 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Notes:
1. The views and needs of stakeholders have to be sought and listened to.

For example, stakeholders might have an interest in:
. setting the requirements for a process, project or product
. evaluating the quality of a product
. using the product or system, even indirectly
. avoiding problems themselves as a result of our product or system
. the system or product being compatible with another machine or
software component

. determining the constraints on development, operation or retire-
ment of the system or product

2. Stakeholders specify requirements, directly or indirectly, for the system
attributes (function, performance, resource, design constraints, and
condition constraints). They determine the degree of product or
system success or failure.

3. Systems engineers should determine which requirements the stake-
holders need, and which requirements they can afford. Even if the
stakeholders are not currently conscious of those needs and limitations!
Example:
Goal [Stakeholders¼ {Installers, Service People}, End This Year]:
60 hours <- Marketing Authority.
Marketing Authority: Stakeholder: Our Service Organization.
The Goal requirement applies to a set of defined stakeholders. The
requirement authority (the one who has requested this Goal level) is
defined as another stakeholder.

4. Stakeholders can be internal or external to a system – it depends on the
context. Internal stakeholders are typically in our development orga-
nization. External stakeholders might be the users and customers of the
developed system. Often very external stakeholders are instances like
laws and government organizations that can impose requirements on
our system. This distinction is useful:
. to help us develop better lists of stakeholders
. so we don’t get fixated on the ‘customer/user’ as the only require-
ments source

. to give us a systematic set of (internal) stakeholders to deliver to, as we
evolve the system, even when it is not ready for external stakeholders.

Related Concepts: Owner *102; Client *235; Sponsor *396; Decision-
Maker *237; Consumer *038; User *234; Designer *190.

Standards Concept *138
A standard is an official, written specification that guides a defined
group of people in doing a process. It is a best-known practice.

‘‘A thing serving as a recognized example or principle to which others
conform or should conform or by which the accuracy or quality of
others is judged.’’

Oxford Dictionary3

3 The New Shorter Oxford English Dictionary, 1993. Oxford: Oxford University Press.
ISBN 0-19-861134-X.

Planguage Concept Glossary 421

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Standards include: {rule, policy, process, entry condition, procedure, exit
condition, form, template}.
Synonyms: Work Process Standards *138.
Related Concepts: Rule *129; Policy *111; Process *113; Form *068;
Template *254.

Status Concept *174
Status is the outcome of an evaluation of a defined condition (or set of
conditions). Status can be a matter of establishing true/false or it can
be a set of different indicators (status settings). Status determines
whether a specification or system component applies/is usable or not.
Notes:
1. For a specification, an evaluation of its status is done whenever a

qualifier or a conditional statement is evaluated. Status is implied.
Example:
Goal [By End of Year, USA, Manager, Product X, If Customer Y
Signed]: 500 Items.
The Goal only applies (500 Items is a Goal) if all the qualifying [time,
place and event] conditions are met (Status¼ true).

2. An explicit Status specification can also be made.
Example:
Safe: Status: {A, B, C, Not D, Weekday}.
A: Condition: Everybody feels good and no one panics.
B: Event Condition: No official alarm is raised by Building Safety, or
on public address.
C: Indicator Condition: No red light flashing on your workstation to
warn of unsafe air conditions.
D: Sign Condition: Lobby Sign says ‘‘No Smog.’’

Standards
*138

Procedure
*115

Entry Condition
*056Process Rule

Others
(For example:

Interface)

Specification
*137

Process
*113

Policy
*111

Rule
*609

Exit Condition
*064

Template
*254

Form
*068

Specification Rule

Concept
*595

Concept Rule

Policy Rule

Other Rules

Process Structure

Generic Specification Rule

Other

Figure G29
Shows a variety of work process standards provided by Planguage to help define work
processes.

422 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Different types of Condition are examined. Status is used to collect the
results of the condition set. The reason you might organize things this way
is to provide clarity of specification and to enable reuse of specifications. For
example ‘No Alarms: Status: {B, C}.’

3. Status is commonly explicitly used as a parameter for classifying
specification status.
(The underlying conditions are usually not explicitly specified with a
specification status.)
Example:
Document XYZ: Version: February 22, 2005. Status: Draft.
This can be used for a document, or any defined specification, includ-
ing a single requirement or design specification. Suggested status set-
tings (indicators) include:
. Undetermined
. Under Revision
. Exited
. Approved
. Validated
. Verified (proven to be present and correct by some form or test or
observation)

. ‘Initial, Defined, Agreed Upon, Released’ for ‘working state’ (as used
by Daimler Chrysler, 2002 [Personal Communication 2002]).

Rationale:
. to clearly warn specification readers when a specification is not really
approved for certain uses.

. to allow even small subsets of a larger specification document to be
independently upgraded or downgraded in status.

. to help control the evolution of any technical specification.
4. Status can also be used for system component control. For example, at the

beginning and end of a process, the relevant entry and exit conditions
respectively are usually status-checked. Each entry/exit condition could
have a true or false status.

Synonyms: State *174.
Related Concepts: Condition *024.

Stretch Concept *404
A Stretch parameter is used to define a somewhat more ambitious
target level than the committed Goal or Budget levels.
A Stretch level is specified on a defined Scale, under specified
conditions [time, place, event]. There is no commitment to deliver a
Stretch level. Stretch announces that there is some stakeholder value
at that level, if we can find a practical or economic solution for
delivering it.
Notes:
1. The intention is that a Stretch target is challenging, even quite difficult

to attain.
It is used in an attempt to inspire and motivate people to do their very
best and to do something more than they would otherwise dare to do.

2. There is not a project commitment to attain a Stretch target. The
technology to reach it may be unknown or unavailable. The techno-
logy could be too expensive at present to make it profitable to make

Planguage Concept Glossary 423

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

this level the Goal or Budget level. However, if without using any extra
resources, the project could reach a Stretch level, it would be wel-
comed. It would have some potential stakeholder value as a result.

3. A Stretch level specification can be a resource target or a performance
target.

‘‘Stretch is reaching for more than what you thought possible. . . . In a
stretch environment, the same field team is asked to come in with ‘operat-
ing plans’ that reflect their dreams – the highest number they think they
had a shot at: their ‘stretch’. The discussion revolves around new directions
and growth, energizing stuff. . . .We’ll never stop ‘stretching’.’’

Jack Welch former CEO General Electric, in Jack: Straight from the Gut
(Welch 2001 Pages 385–6)

Synonyms: Stretch Target *404; Stretch Level *404 (see Level *337).
Related Concepts: Need *599; Target *048; Goal *109; Budget *480;
Wish *244.
Keyed Icon: >þ In context: --->þ--->O--->þ--->
Historical Note: The Stretch concept was first used in Planguage by Pete
Fuenfhausen, then at Nokia, Dallas, TX, September 1999.

Supports Concept *415
‘Supports’ is used to indicate what an attribute is mainly intended to
support. It differs from ‘Impacts,’ which can include information about
all the negative unintended side effects. ‘Supports’ only lists selected
intended main supporting impacts.
Example:
Low RF Power Output [Radio Heads]:
Supports: {Availability, Co-existing, Robustness, Others} <- Marketing
Specification 4.2.1.8.
Related Concepts: Impacts *334; Is Supported By *414.

Survival Concept *440
Survival is a state where the system can exist. Outside the survival
range is a ‘dead’ system caused by a specific attribute level being
outside the survival range. For example, ‘frozen to death’ or
‘suffocated.’
A Survival parameter specifies the upper or lower acceptable limits
under specified conditions [time, place, event], for a scalar attribute.
It is a constraint notion used to express the attribute levels, which define
the survival of the entire system.
For example, a system violating a Survival limit becomes illegal, or
totally unprofitable, or in strong violation of a contract. Survival limits
are typically derived from laws, regulations and contractual
specifications.
Each survival specification should always have a clearly stated
Authority or Source specified.
Notes:
1. Survival is used to clearly state the nearby existence of a strong ‘sudden

death’ borderline for an entire system. Worse than a Survival level is a
‘catastrophe.’

424 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

2. One elementary scalar requirement can have several simultaneous
Survival specifications. This is because there can be different qualifiers
for each Survival level (that is, different times, places and events can
apply). For example, different stakeholders can set different criteria.

3. Survival can be used to set resource limits or performance limits, at
both extremes (---[--- and ---]--->O---[--- and ---]--->).

4. Survival implies strong authority behind it (like a Law or Corporate
Policy). You should always document the exact source of this author-
ity, using Source and/or Authority. You should also include any other
information, which that would help the specification reader to under-
stand why this requirement has been classified as a Survival Limit (such
as Rationale).

5. A Survival Limit violation will not necessarily lead to real catastrophic
failure. The failure degree depends on discovery and reaction from the
Authority behind it at the time and place of violation. For example, just
because the heart stops does notmean the person is finally dead.However,
the heart cannot be expected to start up on its own: deathmay well result.
Example:
Financial Cost Budget:
Scale: Cost in $ for Total Project.
Budget [Lifetime Warranty]: $9.5 million. Rationale: To allow for
risks and any lawsuits.
Fail [By Contract Completion]: $9 million. Rationale: To ensure
Profit Level.
Survival [By Contract Completion]: $10 million <- Contract 5.4.3.
Budget, Fail and Survival specify requirements with varying priority.
Budget implies ‘get to this level for success.’ Fail specifies ‘must reach this
to avoid any failure (disappointment in the results).’ Survival sets the
upper financial limit to avoid disaster.

Synonyms: Survival Level (see Level *337); Survival Limit (see Limit
*606).
Related Concepts: Fail *098; Limit *606.
Keyed Icon: [and/or] ‘‘The ‘[’ being a lower limit and the ‘]’ being an
upper limit.’’

Systecture ! Concept *564
See Systems Architecture *564. Systecture is a conjunction of the terms
‘systems’ and ‘architecture’.
Historical Note: In July 2002, in connection with a book manuscript on
systems architecture, I needed a catchy term for the book title. In my 1988
book, Principles of Software Engineering Management, I had coined the
terms ‘softecture’ and ‘softect’. So, it seemed natural to extend this to the system
engineering area. A web search turned up www.systect.com (Systect, Inc.
‘The system architects’) a systems architecture company, but no use of Systecture
at all. ! Tom@Gilb.com 2002. Permission is granted to use the term as a
generic word. I felt there was a need to get away from the ‘architecture’ term.
Architect is from ‘Archi-Tecton,’ which means ‘Master Builder.’ ‘Archi’ is not
from ‘Arch’, but from ‘Arche’: primitive, original, primary.4

4 Contributed by Niels Malotaux.

Planguage Concept Glossary 425

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

System [Planguage] Concept *145
A system is any useful subset of the universe that we choose to specify. It
can be conceptual or real. In Planguage, a system can be described
fundamentally by a set of attributes. The attributes are of the following
types:
. function: ‘what’ the system does
. performance: ‘how good’ (quality, resource saving, workload
capacity)

. resource: ‘at what cost’ (resource expenditure)

. design: ‘by what means.’
In addition, other factors describing various aspects of the system can
be specified. These include:
. requirements
. dependencies
. risks
. priorities.
All these specifications (the attributes and the additional factors) are
qualified by time, place and event conditions.
Notes:
1. There are specific Planguage parameters for capturing all the system

information, including: Function, Performance, Resource, Design,
Requirement, Dependency, Risk and Priority.

2. A Norwegian professor client of mine said (about 1969) that he
detested the word ‘system’ because it ‘‘had the precision of the word
‘thing’.’’ I have ever since then been careful using it, and hope the
Planguage definition limits the scope somewhat.

3. Here are some standard definitions of ‘system’:
Standard Definition [System, ISO 9000, 2000]:

‘‘An object consisting of interrelated or interacting elements.’’

Note, this ISO 9000 definition emphasizes the internal relationship
or interaction of system elements. This has limited interest. The
most central aspect of systems is how they are externally experienced
and perceived by other systems, so the Planguage definition empha-
sizes the attributes and admits the possibility of all manner of
description, including the ‘interacting elements’ – but chooses to
emphasize real-world ‘interaction’ (between any one system and all
others).
Standard Definition [System, EIA/IS-731.1, 1996 Interim Standard]:

‘‘system: The aggregation of end products and enabling products that
achieves a given purpose.’’

Note in this EIA/IS-731.1 system definition, the concept of ‘purpose’
comes in. However, lost is the possibility of multiple stakeholders and
multiple purposes through time.
Standard Definition [System, ISO/IEC 15288, preliminary version
2000]:

‘‘4.17 System An object consisting of interrelated or interacting elements
(ISO 9000: 2000).
NOTE: In practice, a system is ‘in the eye of the beholder’ and the inter-
pretation of its meaning is frequently clarified by the use of an associative
noun, e.g. product system, aircraft system. Alternatively the word system may

426 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

be substituted simply by a context dependent synonym, e.g. product, aircraft,
though this may then obscure a system principles perspective.’’

Note in this ISO/IEC 15288 definition, the authors seem to see a
problem with the concept, but try to solve it by encouraging specific
adjectives to describe it. They stick to the official version [ISO] but do not
mention attributes or purposes. A hint about systems principles is given.
Standard Definition [MIL-STD 499B]:

‘‘System: An integrated composite of people, products, and processes that
provide a capability to satisfy a stated need or objective.’’

Note this MIL-STD 499B definition is unnecessarily narrow (it does
not include the Planetary system, or the molecular system, J) and
unnecessarily broad (a people or product or process would be suffi-
ciently narrow for many systems engineering purposes). It is good that
it mentions the capability to satisfy requirements, but some systems
have capabilities that satisfy nobody’s requirements (like faults and side
effects). Systems are as they are, whether we like it or not. We have to
be able to understand and describe their attributes realistically, like
them or not.

4. When defining a system, it is important to decide the relationship
between the system being observed and changed, and the system of the
people (the project) bringing about any change. Numerous different
relationships can exist. At one extreme, a project can be completely
within the system being modified. At another extreme, a project might
be developing a product system to be sold into various, as yet
unknown, target systems.

Synonyms: System *145; Object *099: A separate concept number has
been allocated as the two terms tend to be used distinctly.
Related Concepts: Attribute *003.

Systems Architecture Concept *564
Systems Architecture is the set of artifacts produced by Architecture
Engineering. A systems architecture is a strategic framework and
consists of models, standards and design constraints specifying
mandatory and recommended best practice for implementing and
maintaining systems.
Notes:
1. A systems architecture usually applies across a division or an entire

organization.
2. A systems architecture varies in its level of detail depending on its

maturity and what is required of it. Different organizational cultures
will require different things. The main point is that a systems archi-
tecture should be cost-effective.

3. The aims of a systems architecture could include:
. imparting technical strategy
. sharing best practices
. ensuring specific standards are adhered to (for example, security)
. avoiding duplication of effort
. reducing risk by promoting tried and trusted information
. encouraging recognition and use of standard interfaces
. promoting reuse

Planguage Concept Glossary 427

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

. ensuring compatibility of data structures amongst systems

. achieving economies of scale through standard platforms (especially
for training, support and maintenance).

4. Individual systems will have their own architecture (Architecture *192),
which will adhere to any relevant mandatory systems architecture.

Synonyms: Systecture *564.
Related Concepts: Architecture Engineering *499; Architecture Specifi-
cation *617; Standards*138; Architecture *192.

Systems Engineering Concept *223
Systems Engineering (SE) is an engineering process encompassing and
managing all relevant system stakeholders requirements, as well as all
design solutions, andnecessary technology,economicandpoliticalareas.
The fundamental purposes of systems engineering are to:
. optimize the system solution at the highest level of stakeholder concerns,
. synchronize all contributing disciplines to contribute efficiently to the
final system characteristics,

. consider the entire system life cycle needs,

. manage risks for the entire system and the entire system life.
An INCOSE Definition:

‘‘Systems Engineering integrates all the disciplines and specialty groups into
a team effort forming a structured development process that proceeds from
concept to production to operation. Systems Engineering considers both
the business and the technical needs of all customers with the goal of
providing a quality product that meets the user needs.’’

(http://www.incose.org/whatis.html)

Blanchard’s Department of Defence (DoD) Definition:

Systems Engineering is the ‘‘process that shall:
1. Transform operational needs and requirements into an integrated sys-

tem design solution through concurrent consideration of all life-cycle
needs (i.e., development, manufacturing, test and evaluation, verifica-
tion, deployment, operations, support, training and disposal);

2. Ensure the compatibility, interoperability, and integration of all func-
tional and physical interfaces and ensure that system definition and
design reflect the requirements for all system elements (i.e., hardware,
software, facilities, people, data); and

3. Characterize and manage technical risks.’’
(Blanchard 1997)

An FAA (the USA Federal Aviation Authority) Definition:

Systems Engineering is: ‘‘A hybrid methodology that combines policy,
analysis, design, and management. It ensures that a complex man-made
system or product, selected from the range of options available, is the one
most likely to satisfy the customer’s objectives in the context of long-term
future operation or market environments.
Systems engineering is applied throughout the system or product life cycle as a
comprehensive, possibly iterative, interleaved, or recursive, technical process to:
a. Translate an operational need into a configured system or product

meeting the operational need
b. Integrate the technical contributions of all available development

resources, including all technical disciplines into a coordinated effort
that meets established program cost, schedule and performance objec-
tives. This involves a ‘holistic view’ (the design of the whole as

428 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

distinguished from the design of the parts). Such a view is multi-
disciplinary in nature, rather than disciplinary or interdisciplinary;

c. Ensure the compatibility of all function and physical interfaces (internal
and external)

d. Ensure that system or product definition and design reflect the require-
ments in system or product elements (outcome, hardware, software,
facilities, people, and data).

e. Characterize [identify, define, and classify] technical risks, develop risk
abatement approaches, and reduce technical risks by prevention and
mitigation of impacts when risks are realized.’’

Source: FAA-iCMM Appraisal Method Version 1.0 A-19, INCOSE Confer-
ence CD, June 1999, Brighton UK (FAA 1998).

Notes:
1. The Systems Engineering process is a conscious attempt to avoid

sub-optimal engineering. Without Systems Engineering, the success
of the resulting system is more accidental than predictable. Systems
engineering is necessary because there are so many possible places
for product development to go wrong. For example, sub-optimal
results might be caused by setting requirements for too narrow a list
of stakeholders, or by using too narrow a set of design ideas to solve
the problem of satisfying all project requirements. Another frequent
problem, especially in well-established large companies, is for groups
to produce optimal components yet produce a very sub-optimal
complete system.

Systems
Architecture

*564

Platform Strategy

Standards
Development

Program Management
Systems Architecture

Management

Other EngineeringSystems Engineering *223

Engineering *224

Data Structures Strategy

Application Portfolio
Strategy

Methods
Strategy

Project

Requirement
Specification

*508

Design
Specification

*586

Impact
Estimation

Table
*638

Standards
*138
-Security
-Interface
-Requirement
Specification
-Other

Evo Step
Specification

*370

Evo
Plan
*322

Architecture
Specification

*617

Design Engineering
*501

Requirements Engineering
*614 Evolutionary

Project
Management
(Evo) *355

Architecture Engineering
*499

Systems Engineering Hierarchy

Specifications

Processes

Concepts

Impact Estimation
*283

Requirement Specification
(Process) *612

Architecture
Specification

*617

Figure G30
Shows the relationship for systems engineering amongst concepts, processes and specifi-
cations.

Planguage Concept Glossary 429

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

2. Systems engineering includes a broad application of disciplines such as
requirements engineering, quality control, project management, test
engineering and any of the many other disciplines that might be found
useful for satisfying stakeholders. Architecture Engineering, a subset of
systems engineering, is by contrast, directed only towards the design
aspects.

Synonyms: System Engineering *223.
Related Concepts: Engineering *224; Architecture Engineering *499;
Requirement Engineering *614; Design Engineering *501; Evolutionary
Project Management *355.

Tag Concept *146
A term that serves to identify a statement, or set of statements,
unambiguously.
Notes:
1. A local tag name is declared for any set of specification statements

which needs a ‘unique identity’ to enable local cross-referencing. It is a
direct reference to the specific set of specification statements. For
example, ‘Local Tag 3.’ A local tag must be unique within the speci-
fication it is declared in, without needing hierarchical tag references or
any other device to locate it.

2. Hierarchical tags help people navigate, and understand the context of a
specification. A hierarchical tag identifies a local tag name in some larger
context. It can also be used to resolve ambiguity amongst two or more
identical, local tags. For example, A.B.Button.XY and C.D. Button.XY.
A hierarchical tag has a structure of Tag 1.Tag 2.Tag 3.Local Tag N.
Meaning Tag 3 is a subset of Tag 2. Tag 2 is a subset of Tag 1 – and
that Local Tag N will be found in Tag 1’s location.
Hierarchical tags can have any useful number of levels, no matter how
many levels are defined in total in a specification. You do not have to
repeat the entire formal sequence of hierarchical tags – just specify
enough to help find the local tag you are referring to, unambiguously.

3. One use for hierarchical tagging is to identify a specific Planguage
statement. For example, Usability.Fail and Usability.Goal refer to the
parameters under the Usability tag.

4. [Qualifier] conditions can be used to differentiate amongst several
equal terms. The qualifier conditions act as an extension to the normal
tag helping us to distinguish amongst different spaces within the scope
of the same tag name.
Example:
Reliability [USA, Retail Dealers].
Project Oasis.Requirements.Usability.Fail [USA, Retail Dealers].

Synonyms: Identifier *146; Tag Name *146.

Target Concept *048
A target is a specified stakeholder-valued requirement, which you are
aiming to deliver under specified conditions. There are two kinds of
target: ‘scalar’ and ‘binary.’ Scalar targets are specified using the
parameters {Goal, Budget, Stretch, Wish}. A performance target is
known as a ‘goal’ and a resource target is known as a ‘budget.’
Binary targets are function targets.

430 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Notes:
1. A target is not a constraint. Targets specify the success levels for scalar

requirements, and any stakeholder-desired binary requirements.
Constraints by contrast specify any failure and/or survival levels for scalar
requirements, and any mandatory requirements for binary requirements.

2. Function targets, valued functions, are subtly different from function
constraints. Function constraints are mandatory. If a function con-
straint is not met, then some degree of failure will occur, or even total
system catastrophe. Function targets do not have implied penalties,
they are considered required by some stakeholder.

3. A scalar target specification consists of a numeric value (its target level)
and its relevant [qualifiers]. As well as Goal, Budget, Stretch and Wish,
‘Ideal’ is a target parameter, but it is rarely used.

4. Target can also be used as a collective noun, applied to a set of
function targets and variable scalar targets with their individual
qualified levels.

Related Concepts: Goal *439: a performance target; Budget *421: a
resource target; Benchmark *007; Constraint *218; Function Target *420.
Keyed Icon: @

Task Concept *149
A task is a defined and limited piece of work. A task may be defined
formally by a procedure and other standards (how to carry out a task).
A process is characterized by the repetition of a task.
Notes:
1. A task may be a complex activity. It can be defined using a set of

process standards, such as procedures, rules, forms, rates, best practice
models, checklists, and guidelines.

‘‘A piece of assigned work.’’
<- The American Heritage Dictionary.

2. A task is the main part of a defined process. Entry conditions are
checked before we invest time carrying out the task. We also check that
a task has met our defined exit conditions before we consider ourselves
properly done with it. This structure of a process is sometimes abbre-
viated as ‘ETX’ (Entry Task Exit).

Related Concepts: Act [PDSA] *172; Process *113; Procedure *115.

---[----->?--->+--->------!--]---->O---[--!------>--->+--->?-------]---->

Resource
Constraints:

Resource Targets:
Wish Stretch Budget

Performance
Constraints:

Performance Targets:
Goal Stretch Wish

Survival Fail Survival Survival Fail Survival

Figure G31
Shows scalar targets can be specified for both performance and resource
requirements.

Planguage Concept Glossary 431

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Test Concept *256
To test is to plan and execute an analytical process on any system,
product or process, where we attempt to understand if the system
performs as expected, or not.
A Test parameter can be used to reference specific test plans and
processes.
Notes:
1. The overall aim of testing is to determine if the requirements are met.
2. Testing is a means of understanding how something works without neces-

sarily understanding exactly why it works that way. Testing is from outside
the ‘black box.’ Only by examining actual construction, or specification can
we analyze the inner workings of the system (the design and construction).

3. We typically test by putting planned or random inputs into a system
and comparing the resulting outputs (behavior and data) with our
expectations. When the outputs deviate from expected behavior, we
must analyze the reason to see if the system is failing to meet require-
ments or if the requirements are wrongly specified. If it is economic to
do so, we will probably correct either the system itself, or the specifica-
tion, or both.

4. The term testing could be applied in a much wider sense to any form of
examination (QC, SQC, QA), but it is specifically limited in Plan-
guage to ‘input-output’ testing of the system prior to operational use.
‘Test’ is not intended to apply to conceptual models of a system, but
only to prototypes and real-world systems.

5. The Test parameter can also be used to specify, or more likely cross-
reference, already-developed test cases and test plans for reuse or
modification.
Example:
Requirement X:
Scale:
Meter [Module Level]: . . . , [Customer Acceptance]: Contract Section
6.0, [Operation]: . . .
TP XYZ: Test Plan [System XYZ]: Test Plan Document XYZ [May
This Year].
Test [Goal]: TP XYZ [Section 1.2.3, Test Cases¼ {3.4, 6.7, 9.1.4}].
Test parameter used to cross-reference test plans and test cases for
Requirement X.
Test Tag: Test [Acceptance]: Two independent observers, [Operation]:
Built-in software test.
A Test specification, which can be included with any attribute require-
ment, can be referred to via its tag (‘Test Tag’). Notice that the qualifiers
distinguish between two different stages of testing. The two suggested test
methods are very roughly specified. This is useful at early stages of specifica-
tion in order to get some idea and agreement about test costs and quality.
This does not prevent a later stage of engineering detailing this to any
interesting level of test plan.

6. Compare ‘Test’ with the parameter Meter, which is the specification of
how to measure numerically according to a defined process in the
Meter specification.

Related Concepts: Meter *093: Test differs from ‘Meter’ in that Test is
very specifically concerned with system testing, while Meter is concerned
with any form of measurement (for example, SQC).

432 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Time Concept *153
Time defines ‘when’. It relates to any notion of time: clock-time or
timescale. Time is used both as a parameter and in a qualifier
condition.
Example:
Goal [Time¼Weekends, Place¼UK]: 60%.
Fail [Opening Hours, USA]: 50%.
Opening Hours: Time: {Weekday [0800 to 2000], Weekend [0900 to
1800], Not Legal Holiday}.
Goal [Time¼By End of This Year]: 40%.
Goal [Date¼Before January 31, This Year]: 30%.
Related Concepts: Place *107; Event *062; Qualifier *124; Scope
*419.

Trend Concept *155
A Trend parameter is used to specify how we expect or estimate
attribute levels to be in the future. It is used as a benchmark.
A Trend parameter states a numeric value, on a defined Scale, under
specified conditions [time, place, event], for a scalar attribute that is
extrapolated into the future, based on current knowledge.
Rationale: The purpose of Trend is to give us a better comparison
(benchmark) for the degree of improvement or change we are planning
or achieving, than we would get by using the more static benchmark
‘Past.’ Trend makes us plan to cope with the future, not just the past. It
makes systems engineers think about the competition.
Example:
Peace:
Scale: Probability of Peacetime Situation.
Trend [Next Year, Country¼ {Gb, F, NO, DK}]: 80%? <- Marketing
Guess.
Peacetime Situation: National Military Forces are not deployed any-
where for any purpose, even NATO or UN peacekeeping.
Trend represents our expectation of what the Past levels of this attribute
will extrapolate to in the future (unless we plan to change that projected
reality . . .).

‘‘The other beauty (‘truths I’ve learned to challenge’) goes something like
this: A team comes in with a proposal to leapfrog the current position
of its leading competitor. The implicit assumption is the competition will
be sleeping. Doesn’t usually happen that way . . . It was tough, but we
tried like hell to look at every new product plan in the context of what the
smartest competitor could do to trump us. Never underestimate the other
guy.’’

Jack Welch, former CEO General Electric (Welch 2001 Page 391)

Synonyms: Trend Level *155.
Related Concepts: Benchmark *007.
Keyed Icon: ?<
‘‘Symbolizing a Past (<) with some doubt (?) about the perfect truth.
Must normally be applied on a scalar arrow, <------?<-----O----?<---->’’
Historical Note: This concept was suggested first by Kai Thomas Gilb, May
1995.

Planguage Concept Glossary 433

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Type Concept *398
Type specifies the category of a Planguage concept. Categories
for Type may be defined both by Planguage and by local
extensions.
Notes:
1. Type classifications can be explicit.

Example:
Maintaining Standards:
Type: Function. ‘‘Explicit specification of Type.’’

2. Type classifications can be implicit. Type can be implied by content
and context.
Example:
Usability: Objective. ‘‘Implicit use of Type.’’
Requirements Section. ‘‘Implicit Type given by use in a heading.’’

3. In this glossary, Type can be used explicitly to state the categories of
the Planguage concepts (to save space, these have been omitted from
this book).

4. Type can be specified as a hierarchy.
Example:
Requirements.Performance.Quality.

5. A specific specification type may demand certain rules of specification
are followed, or imply certain properties. For example, a ‘Performance’
type will always require a defined scale of measure as it is scalar, but
‘Design’ will not, as it is binary.

Uncertainty Concept *310
Uncertainty is the degree to which we are in doubt about how an
impact estimate, or measurement, of an attribute reflects reality. We
are ‘uncertain’ as to whether the current or future reality is better or
worse (than the observed or estimated value of an attribute), and by
how much it differs.
Notes:
1. The reason behind the uncertainty could be either the expected,

known variance in the results, or it could be the quality (accuracy,
reliability, precision and relevance) of the measuring or estimating
method, or both.

2. A ‘risk’ is a factor that could result in a future negative consequence. An
uncertainty becomes a ‘risk’ when it implies a potential that a future result
will be negative in relation to a planned or estimated target. (I am well
aware of the field definitions used in Economics for risk and uncertainty
(Bernstein 1996), and the history of making a distinction (for example, the
work of Frank Knight and J. M. Keynes). However, the definitions here
are tailored to system engineering purposes, rather than Economics.)

Related Concepts: Risk *309.

Until Concept *551
‘Until’ is a logical operator that is used to limit the extent of a scalar
range of values. The purpose is to explicitly map a range rather than
have it implied by a single value at one extreme (like a Fail limit).

434 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Example:
Fail [Gb, Next Version]: 60% Until Survival.
Survival [International, Next Year]: 20% Until 0%.
Fail [EU]: 80% Until 20%.
Related Concepts: Or Worse *549; Or Better *550; Range *552.

User-Defined Term Concept *530
In Planguage, a user-defined term is a definition of a term made by a
Planguage user. It is not a Planguage term (like Scale or Goal), nor a
customer-tailored Planguage term, such as a new parameter,
parameter synonym or grammatical variation.
The scope of a user-defined term is ‘local,’ and it might apply within a
specific definition, within a specific project or across an organization.
A user-defined term has a tag that it is referred to by. It may be
specified using ‘Defined’ or ‘Defined As’ or, by adding a tag to give a
tag name to any expression, statement, or term.
Example:
Address Change: Defined As: A change to an existing address.
MTBF: Scale: Mean Time Between Failure.
PB: Goal [If Peace]: 20%.
User-defined terms are Address Change, MTBF, PB, Failure and Peace.
Address Change is an example of explicit definition. MTBF and PB are
tags defined in the statements above. Failure and Peace are defined else-
where.
Notes:
1. A user-defined term is not part of a Project Language (also known as a

‘Specific Project Specification Language’ – a customized Planguage
Specification Language).

Synonyms: Project-Defined Term *530.
Related Concepts: Planguage Term *211; Project Language *247.

Value Concept *269
Value is perceived benefit: that is, the benefit we think we will get from
something.
Notes:
1. Value is the potential consequence of system attributes, for one or more

stakeholders.
2. Value is not linearly related to a system improvement: for example, a

small change in an attribute level could add immense perceived value
for one group of stakeholders for relatively low cost.

3. Value is the perceived usefulness, worth, utility or importance of a
defined system component or system state, for defined stakeholders,
under specified conditions.

‘‘One man’s meat is another man’s poison.’’ Old proverb

4. ‘Benefit’ is when some perceived value is actually produced by, a defined
system.

5. Value is relative to a stakeholder: it is not absolute. Quality, for
example, is stated in terms of the objective level of ‘how well’ a system
performs, irrespective of how this level is appreciated by any stake-
holders. Some defined levels of quality only have a value to some

Planguage Concept Glossary 435

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

stakeholders. The same is true for all attributes. There are many
Planguage ways of indicating that a stakeholder values an attribute.
These include using Value, Stakeholder, Authority, Impacts, and
Source parameters.

‘‘Nowadays, people know the cost of everything and the value of nothing.’’
Oscar Wilde.

Synonyms: Worth *269.
Related Concepts: Benefit *009; Impacts *334; Values *592.

Version Concept *332
A version is an initial or changed specification instance. A version
identifier can be made from any symbols. It is useful to indicate
unique instances of a specification, also probably the sequence of
changes, and perhaps even the exact time of change.
A version identifier is specified by the Version parameter. By default, use
the date as the version identifier.
Notes:
1. The version should be specified at the level of individual elementary

requirement and design specifications.
Rationale: This aids change control. It allows reviewers to focus mainly
on the changes themselves, rather than the entirety of large documents,
which contain perhaps only a few changes. It also enables us to treat
individual elementary specifications as relatively independent objects,
which are electronically grouped as needed into useful views, rather
than the traditional ‘documents.’
Example:
Version: January 9, 2003.
Edition: 1.02 [Feb 21 03 3:54:36 pm].

2. If a date alone is specified on the same line as a tag, and immediately
after it, then that date will be understood as the version identifier for
whatever that tag encompasses.
Example:
Usability: January 9, 2003. Scale: Time to <learn>. Goal: 6 hours or
better.
Usability: Version¼ January 9, 2003. Scale: Time to<learn>. Goal: 6
hours or better.
Usability [Version¼ January 9, 2003]: Scale: Time to <learn>. Goal:
6 hours or better.

Synonyms: Edition *332; Instance *332.

Vision Concept *422
A vision is an idea about a future state, which is very long range and
probably idealistic, maybe even unrealistic.
The future state is likely to be about the position of a corporation or
product line in relation to the market – rather than about specific
properties of a specific product or system.
Example:

‘‘I say to you today, my friends, that in spite of the difficulties and
frustrations of the moment I still have a dream. It is a dream deeply rooted
in the American dream.

436 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

I have a dream that one day this nation will rise up and live out the true
meaning of its creed — ‘We hold these truths to be self evident, that all men
are created equal’.’’

Martin Luther King Jr., Washington, DC5

Notes:
1. Top managers or leaders state a vision in order to create teamwork to

move in a required direction. A vision can be analyzed and decom-
posed into a set of requirements.

2. In the speeches and writings of senior management, the vision might
be the only defined component which is quoted. However, the
organization and management would be wise to articulate and clarify
their understanding of, and commitment to, the vision by decom-
posing it into a hierarchical set of specific objectives, including
specific goals for the elementary objectives. They should map the
path to the vision with both short-term and long-term numeric
targets. They can then begin an evolutionary process of moving
towards the specified vision.

3. A vision statement is the reference point for developing more-
detailed specifications, such as product line performance specifica-
tions, that support the achievement of the vision. A vision statement
presumes that at least an assumption is made about the mission, for
example that ‘we are in the mobile phone business,’ or ‘we make
aircraft’.

Wish Concept *244
A Wish parameter is used to specify a stakeholder-valued,
uncommitted target level for a scalar attribute. A Wish level is
specified on a defined Scale, under specified conditions [time, place,
event]. There is no commitment to deliver a Wish level. A Wish
parameter simply specifies some stakeholders’ desired level, without
considering its cost or practicality.
Notes:
1. Wish parameters can be useful for acknowledging and recording

stakeholder desires (while clearly not committing to them) until suit-
able design ideas are identified, until resources are provided for those
designs or perhaps until deadlines are adjusted.

2. Wish belongs to the set of target specifications: {Goal/Budget, Stretch,
Wish}.

3. Subject to qualifying conditions, Wish specifications have the lowest
scalar requirement priority. (The order from highest to lowest priority
is Survival, Fail, Goal, Stretch and then Wish.)

4. A Wish specification can apply to a performance or resource
requirement.

Rationale: If we did not have a Wish parameter to articulate uncommitted
stakeholder needs, then this information might never be collected, and
maintained. So, we might lose the competitive advantage of knowing
what our stakeholders desire and value, when the resources or technology
ultimately become available.

5 From: http://www.ku.edu/carrie/docs/texts/mlkdream.html/. Martin Luther King,
‘I Have a Dream’ speech on August 28, 1963, Washington, DC.

Planguage Concept Glossary 437

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-GLOSSARY.3D – 321 – [321–438/118]
29.6.2005 2:12PM

Synonyms: Wish Target *244; Wish Level *244 (see Level *337).
Related Concepts: Need *599; Target *048; Goal *109; Budget *480;
Stretch *404; Ideal *328.
Keyed Icon: >? ‘‘A perhaps questionable goal or budget. In context:
---->?--->O--->?---> ’’
Historical Note: The Wish parameter was first suggested in December 1995
by the Scottish Widows organization, through Dorothy Graham of Grove
Consultants.

Workload Capacity Concept *459
Workload capacity is a performance attribute. It is used to express the
capacity of a system to carry out its workload, that is ‘how much’ a
system can do, did or will do.
Notes:
1. Workload capacity can be used to capture many different concepts of

workload, such as maximum number of registered users, maximum
number of concurrent users, maximum data volumes and average
transaction response times.

2. Workload capacity expresses the system capability to perform a defined
type of work.

Scale [Generic]: An amount of defined [Work Task] to be done in a
defined [Time] by a defined [Agent] in a defined [Environment] on a
defined [System].
Synonyms: Work Capacity *459; Workload Capability *459; Workload
*459; Capacity *459.
Related Concepts: Performance *434; Quality *125; Resource Saving
*429; Workload Capacity Requirement *544.

438 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-BIBLIOGRAPHY.3D – 439 – [439–444/6]
29.6.2005 12:56PM

BIBLIOGRAPHY

Abrahamsson, Pekka, Outi Salo, Jussi Ronkainen and Juhani Warsta. 2002.
Agile Software Development Methods. Review and Analysis. Espoo, Finland:
VTT Publications. ISBN 951-38-6009-4. www.inf.vtt.fi/pdf/. 107 pages.

Akao, Yoji (Editor). 1990. Quality Function Deployment: Integrating Customer
Requirements into Product Design. Cambridge, MA: Productivity Press Inc.,
ISBN 0-915-29941-0. 367 pages.

Ansoff, H. Igor. 1965. Corporate Strategy. London: Penguin Books. ISBN
0-140-09112-2. 288 pages.

Bernstein, L. 1996. Against The Gods: The Remarkable Story of Risk. Wiley.
ISBN 0-471-29563-9. 383 pages.

Blanchard, Benjamin S. 1997. System Engineering Management. New York:
John Wiley & Sons, Inc. ISBN 0-471-19086-1. 504 pages.

Bronson, Darren. 1999. Best Practices for Evolutionary Software Develop-
ment. Massachusetts Institute of Technology (MIT) MBA and MSc. thesis.
(This was submitted to the Sloan School of Management and the Depart-
ment of Electrical Engineering and Computer Science in partial fulfillment
of the requirements for the degrees of Master of Business Administration
and Master of Science in Electrical Engineering and Computer Science
in conjunction with the Leaders for Manufacturing Program at the
Massachusetts Institute of Technology in June 1999.

Cockburn, Alistair. 2002. Agile Software Development. Boston, MA: Addison
Wesley, Inc. ISBN 0-201-69969-9. 278 pages.

Cotton, Todd. August 1996. Evolutionary Fusion: A Customer-Oriented
Incremental Life Cycle for Fusion. Hewlett-Packard Journal. Volume 47,
Number 4, Pages 25–38. (This is adapted from the book, Object-Oriented
Development at Work: Fusion in the Real World. Ruth Malan et al. (eds).
Englewood Cliffs, NJ: Prentice Hall PTR. 1996.)

Crosby, Philip B. 1985. Quality Improvement through Defect Prevention: An
Individual’s Role. Philip Crosby Associates Inc.

Crosby, Philip B. 1996. Quality is Still Free: Making Quality Certain in
Uncertain Times. McGraw Hill. ISBN 0-07-014532-6. 265 pages.

Cusumano, Michael A. and Richard W. Selby. 1995. Microsoft Secrets: How
the World’s Most Powerful Software Company Creates Technology, Shapes
Markets, and Manages People. The Free Press (A Division of Simon and
Schuster). ISBN 0-02-874048-3. 512 pages.

Daniels, J., P. W. Werner and A. T. Bahill, 2001. Quantitative Methods for
Tradeoff Analysis. Systems Engineering. Volume 4, Number 3, Pages 190–211.

Delavigne, Kenneth and Daniel J. Robertson. 1994. Deming’s Profound
Changes. When Will the Sleeping Giant Awaken? Englewood Cliffs, NJ:
Prentice Hall PTR. ISBN 0-13-292690-3. Foreword by W. E. Deming.

Deming, W. Edwards. 1986. Out of the Crisis. MIT Center for Advanced
Engineering Study (CAES), Cambridge, MA, USA-02139. ISBN
0-911379-01-0. 507 pages.

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-BIBLIOGRAPHY.3D – 439 – [439–444/6]
29.6.2005 12:56PM

Deming, W. Edwards. 1993. The New Economics For Industry, Government,
Education. MIT Center for Advanced Engineering Study (CAES),
Cambridge, MA, USA-02139. ISBN 0-911379-05-3. 240 pages.

Dion, Raymond. July 1993. Process Improvement and the Corporate Balance
Sheet. IEEE Software. Pages 28–35. See Haley et al. (1995) for update and
more detail.

DoD Evolutionary Acquisition. 1998. Joint Logistics Commanders Gui-
dance for Use of Evolutionary Acquisition Strategy to acquire Weapon
Systems. The Defense Systems Management College Press, Fort Belvoir,
VA 22060-5565. Revised and reissued in June 1998 with a new
Foreword.

Elliot, Trevor andDaveHerbert. 2002. Joined-Up Systems: Building the Integrated
Business (The Management Consultancies Association Series). London: Hodder
and Stoughton Educational. ISBN 0-340-85054-X. 192 pages.

Gilb, Tom. 1976. Software Metrics. Sweden: Studentlitteratur AB, Lund
(1976). USA: Winthrop (1977). Out of print.

Gilb, Tom. 1988. Principles of Software Engineering Management. Woking-
ham and Reading, MA: Addison-Wesley. ISBN 0-201-19246-2. 442
pages.

Gilb, Tom. 2005. Course lecture slides, articles, papers and book manuscripts
on World Wide Web. URL: www.Gilb.com/.

Gilb, Tom and Dorothy Graham. 1993. Software Inspection. Addison-Wesley.
ISBN 0-201-63181-4. 471 pages.

Grady, Robert B. and Tom Van Slack. Hewlett-Packard. July 1994. Key
Lessons in Achieving Widespread Inspection Use. IEEE Software. Pages
46–58. This paper also appears in Wheeler, Brykczynski and Meeson
(1996). This paper is available for a fee at http://csdl.computer.org/comp/
mags/so/1994/04/s4046abs.htm/.

Haley, T., B. Ireland, Ed. Wojtaszek, D. Nash and R. Dion. Raytheon. 1995.
Raytheon Electronic Systems Experience in Software Process Improvement.
This paper is available on-line at http://www.sei.cmu.edu/publications/
documents/95.reports/95.tr.017.html/.

Hooks, Ivy F. and Kristin A. Farry. 2000. Customer-Centered Products:
Creating Successful Products Through Smart Requirements Management.
Amacom (www.amacombooks.org). ISBN 0-814-40568-1. 272 pages. See
www.complianceautomation.com/.

Hummel, Helmut. September 2002. A Strategy for Acquiring Large and Com-
plex Systems. Talk given byDr.HelmutHummel, NATOConference, Bonn.

IBM Systems Journal (IBMSJ). 1980. The Management of Software Engi-
neering. IBM Systems Journal. Volume 19, Number 4, Pages 414–477.

. Part 1: H.D. Mills. Principles of Software Engineering. See Mills (1980).

. Part IV: M. Dyer. Software Development Practices.

. Part V: R. E. Quinnan. Software Engineering Management.

Individual papers from the 1980 Journal are downloadable from http://
www.research.ibm.com/journal/.

IBM Systems Journal (IBMSJ). 1990. IBM Systems Journal. Individual papers
from the 1990 journal are downloadable from http://www.research.ibm.
com/journal/.

IBM Systems Journal (IBMSJ). 1994. Software Quality. IBM Systems Journal.
Volume 33, Number 1. Individual papers from the 1994 journal are
downloadable from http://www.research.ibm.com/journal/.

440 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-BIBLIOGRAPHY.3D – 439 – [439–444/6]
29.6.2005 12:56PM

Ireson,W. Grant. (Editor). 1966. Reliability Handbook. New York: McGrawHill.
Jandourek, Emil. August 1996. A Model for Platform Development. Hewlett-
Packard Journal. A copy of this article is available in PDF at http://
www.hpl.hp.com/hpjournal/96aug/aug96a6.htm/.

Järkvik, Jack, Lars Kylberg and others. 1994. Om att Lyckas (A Bit of Luck
Helps, Too: On Succeeding). Published by Ericsson, Kista, Sweden for
internal use. Sponsored by Mr. Stellan Nennerfelt. Internal publication
number EN/LZT 123 1987.

Juran, J. M. 1964. Managerial Breakthrough: A New Concept of the Manager’s
Job and a Systematic Approach to Improving Management Performance.
McGraw Hill. ISBN 0-07-033172-3. 396 pages.

Juran (Editor). 1974. Quality Control Handbook. McGraw Hill. ISBN
0-07-033175-8. 1780 pages. After 1994, this book is retitled Juran’s
Quality Handbook.

Kaplan, Craig, Ralph Clark and Victor Tang. 1994. Secrets of Software
Quality, 40 Innovations from IBM. McGraw Hill. ISBN 0-07-911975-3.
383 pages. www.iqco.com/.

Keeney, Ralph L. 1992. Value-focused Thinking: A Path to Creative Decision-
making. Cambridge, MA and London: Harvard University Press. ISBN
0-674-93197-1. http://www.fuqua.duke.edu/faculty/alpha/keeney.htm/.

Kelly, J. 1990a. An Analysis of Defect Density found during Software Inspec-
tion. Proceedings of 15th Annual Software Engineering Workshop (NASA
SEL-90-006), Jet Propulsion Labs., Pasadena, CA.

Kelly, J. C. 1990b. An Analysis of Jet Propulsion Laboratory’s Two Year
Experience with Software Inspections. Proceedings of the Minnowbrook
Workshop on Software Engineering, Blue Lake, NY.

Koen, Billy V. 1984. Toward a Definition of the Engineering Method.
Proceedings of the ASEE-IEEE Frontiers in Education. 14th Annual Con-
ference, Philadelphia, PA. 3-5. October 1984. Pages 544–549. The paper
also appeared in Engineering Education. December 1984. Pages 150–155.
Also in Spring 1985 in The Bent of Tau Beta Pi. Pages 28–33. Reprinted
there with permission from Proceedings of the ASEE-IEEE Frontiers in
Education. A full page extract is in Gilb (1988). An extended and very
interesting comment on the paper’s ideas is in Koen (2003).

Koen, Billy Vaughn. January 2003. Discussion of the Method: Conducting the
Engineer’s Approach to Problem Solving. Oxford University Press. ISBN
0-195-15599-8. Pages 260. http://www.me.utexas.edu/faculty/people/
koen.shtml/.

Larman, Craig and Victor Basili. June 2003. Iterative and Incremental
Development: A Brief History. IEEE Computer. Pages 2–11. See
www.craiglarman.com for a copy of this paper.

MacCormack, Alan. Winter 2001. Product-Development Practices that
Work: How Internet Companies Build Software. MIT Sloan Review. Pages
75–84. amaccormack@hbs.edu.

Maier, Mark W. and Eberhardt Rechtin. 2002. The Art of Systems Architecting.
2nd Edition. ISBN 0-9493-0440-7. 303 pages.

May, Elaine L. and Barbara A. Zimmer. August 1996. The Evolutionary
Development Model for Software. Hewlett-Packard Journal. Volume 47,
Number 4, Pages 39–45. Available as pdf Adobe Acrobat file at http://
www.hpl.hp.com/hpjournal/96aug/aug96a4.htm/.

Mays, Robert. June 1995. IBM Defect Prevention Process and Test. Slides in
12th International Conference and Expo on Testing Computer Software,

Bibliography 441

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-BIBLIOGRAPHY.3D – 439 – [439–444/6]
29.6.2005 12:56PM

Washington, DC. See his chapter on the Defect Prevention Process and his
references in Gilb and Graham (1993).

Mills, H. D. 1980. The Management of Software Engineering. Part 1:
Principles of Software Engineering. IBM Systems Journal. Volume 19,
Number 4. Reprinted 1999 in IBM Systems Journal. Volume 38, Numbers
2 and 3. A copy is downloadable from http://www.research.ibm.com/
journal/sj/194/ibmsj1904C.pdf/.

Mintzberg, Henry. 1994. The Rise and Fall of Strategic Planning: Reconceiving
Roles for Planning, Plans, Planners. New York: The Free Press (A Division of
Macmillian, Inc.). ISBN 0-02-921605-2. 458 pages.

Morris, Peter W. G. 1994. The Management of Projects. London: Thomas
Telford. ISBN 0 7277 1693 X. 358 pages. The American Society of Civil
Engineers. The website http://www.indeco.co.uk/ has additional recent
papers by Professor Morris.

Muller, Gerrit. 1999. Requirements Capturing by the System Architect.
Available via http://www.extra.research.philips.com/natlab/sysarch/
RequirementsPaper.pdf/.

Pence, J. L. Pete and Samuel E. Hon III. Telecommunications Network
Systems, Bellcore, Piscataway, NJ. October 1993. Building Software
Quality into Telecommunications Network Systems. Quality Progress.
Pages 95–97.

Peters, Tom. 1992. Liberation Management, Necessary Disorganization for
the Nanosecond Nineties. New York: Knopf and London: Macmillan.
ISBN 0-333-53340-2.

Ramo, Simon and Robin K. St.Clair. 1998. The Systems Approach: Fresh
Solutions to Complex Civil Problems through Combining Science and Practical
Common Sense. TRW, Inc., Manufactured in USA, KNI Incorporated,
Anaheim, CA. 150 pages.

Royce, Walker. 1998. Software Project Management: A Unified Framework.
Reading, MA: Addison Wesley Longman, Inc. ISBN 0-201-30958-0. 406
pages.

Saaty, Thomas L. 1988. Multicriteria Decision Making: The Analytical
Hierarchy Process. Decision Support Software. McLean, VA.

Slater, Robert. 2000. The GE Way Fieldbook: Jack Welch’s Battle Plan for
Corporate Revolution. New York: McGraw Hill. ISBN 0-07-135481-6.
288 pages.

Sproles, Noel. University of South Australia. 2002. Formulating Measures
of Effectiveness. Systems Engineering. Volume 5, Number 4, Pages
253–263. A copy of this paper is available online for a fee at http://
www.interscience.wiley.com/.

Spuck, William J. December 1993. The Rapid Development Method
(RDM). Jet Propulsion Lab (JPL). JPL D-9679 (internal document).

Thayer, Thomas A., Myron Lipow and Eldred C. Nelson. TRW. 1978.
Software Reliability: A Study of Large Project Reliability. TRW Series on
Software Technology. Vol. 2. Amsterdam: North-Holland. Out of print.

Upadhyayula, Sharma. January 2001. Rapid and Flexible Product Develop-
ment: An Analysis of Evolutionary Software Projects at Hewlett Packard
and Agilent. Massachusetts Institute of Technology (MIT) MSc. thesis. A
copy of the thesis is available on the Resources web page at the site http://
www.globalbusinessstrategies.com. (This was submitted to the System
Design and Management Program in partial fulfillment of the requirements

442 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-BIBLIOGRAPHY.3D – 439 – [439–444/6]
29.6.2005 12:56PM

for the degree of Master of Science in Engineering and Management at the
Massachusetts Institute of Technology in January 2001.)

Welch, Jack. 2001. Jack: Straight from the Gut. New York: Warner Business
Books. ISBN 0-446-52838-2. 479 pages.

Weller, Edward. September 1993. Lessons from Three Years of Inspection
Data. IEEE Software. efweller@stt.com

Wheeler, David A., Bill Brykczynski and Reginald N. Jr. Meeson. June 1996.
Software Inspection, An Industry Best Practice. IEEE Computer Society Press.
Order No. BP07340. ISBN 0-818-67340-0. 293 pages.

Young, Ralph R. 2001. Effective Requirements Practices (Addison Wesley
Information Technology Series). Addison Wesley. ISBN 0-201-70912-0.

Bibliography 443

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-BIBLIOGRAPHY.3D – 439 – [439–444/6]
29.6.2005 12:56PM

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-FURTHER READING.3D – 445 – [445–
448/4] 29.6.2005 12:47PM

FURTHER READING

Boehm, B., C. Abts, A.W. Borwn, S. Chulani, B. Clark, E. Horowitz,
R. Madachy, D. Reifer and B. Steece. 2000. Software Cost Estimation with
COCOMO II. Prentice Hall. Updates are at http://sunset.usc.edu/research/
cocomosuite/.

Burr, Adrian and Mal Owen. 1996. Statistical Methods for Software Quality:
Using Metrics for Process Improvement. London: International Thompson
Computer Press. ISBN 1-85032-171-X. 453 pages.

Dettmer, H. William. 1997. Goldratt’s Theory of Constraints: A Systems
Approach to Continuous Improvement. 1997. Milwaukee, WI: American
Society for Quality Press. ISBN 0-87389-370-0. 378 pages.

Drucker, Peter F. 1992. Managing for the Future: The 1990’s and Beyond.
New York: Truman Talley Books/Dutton (Penguin Group). ISBN 0-525-
93414-6.

Florac, William A., Robert E. Park and Anita D. Carleton. April 1997.
Practical Software Measurement: Measuring for Process Management and
Improvement. Software Engineering Institute (SEI). 240 pages. Reference:
CMU/SEI-97-HB-003. A copy (Acrobat Reader) of this guidebook is
downloadable from SEI web site http://www.sei.cmu.edu/pub/documents/
97.reports/pdf/97hb003.pdf/.

Gause, D. C. and G. M. Weinberg. 1989. Exploring Requirements: Quality
Before Design. New York: Dorset House Publishing Co. ISBN 0-932-
633137. 320 pages.

Gilb, Tom. January 1996. What is Level 6? IEEE Software. Managers Column.
Gilb, Tom. 1997. Evolutionary Project Management. Unpublished draft book
manuscript available at www.Gilb.com/.

Gilb, Tom. June 1997. Requirements-Driven Management: A Planning
Language. Crosstalk. Pages 18–42. This paper is available on the DoD’s
Software Technology Support Center (STSC) website at http://
www.stsc.hill.af.mil/Crosstalk via ‘Back Issues’ selecting June 1997.

Gilb, Tom. December 1998. Impact Estimation Tables: Understanding
Complex Technology Quantitatively. Crosstalk. This article can be found
on the DoD’s Software Technology Support Center (STSC) website at
http://www.stsc.hill.af.mil/CrossTalk via ‘Back Issues’ selecting December
1998.

Gilb, Tom. June 1999. Optimizing Systems Engineering Specification Qual-
ity Control Processes. Proceedings: INCOSE, Brighton, UK. Also published
as Optimizing Software Inspections. March 1998. Crosstalk. This paper is
available at http://www.stsc.hill.af.mil/CrossTalk via ‘Back Issues’ selecting
March 1998.

Grady, Robert B. August 1996. Software Failure Analysis for High Return
Process Improvement Decisions. Hewlett-Packard Journal. Volume 47,
Number 4, Pages 15–24. Available as Adobe Acrobat pdf file at http://
www.hpl.hp.com/hpjournal/96aug/aug96a2.htm/.

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-FURTHER READING.3D – 445 – [445–
448/4] 29.6.2005 12:47PM

Gregory, Robin and Ralph L. Keeney. August 1994. Creating Policy Alter-
natives Using Stakeholder Values. Management Science. Volume 40, Num-
ber 8, Pages 1035–1048.

Hughes, Thomas P. 1998. Rescuing Prometheus: Four Monumental Projects that
Changed the Modern World. Vintage (A division of Random House,
www.vintagebooks.com). ISBN 0-679-73938-6. 372 pages.

Humphrey, W. S. 1989. Managing the Software Process (SEI). Addison-
Wesley. ISBN 0-201-18095-2. 450 pages. Humphrey’s work on the Personal
Software Process and Team Software Process is described at http://
www.sei.cmu.edu/tsp/.

Kaplan, Robert S. and David P. Norton. 1996. The Balanced Scorecard:
Translating Strategy into Action. HBS Press. ISBN 0-87584-651-3. 322
pages.

Kauffman, Stuart. 1995. At Home in the Universe: The Search for Laws of Self-
Organization and Complexity. Oxford University Press (OUP) Australia and
New Zealand. ISBN 0-195-09599-5. 321 pages.

Kearns, David T., and David A. Nadler. 1993. Prophets in the Dark, How
Xerox Reinvented Itself and Beat Back the Japanese. New York: HarperBusi-
ness. (Permissions: HarperCollins Publishers, 10 E 53rd, NY NY 10022
Fax (212) 207-7222) ISBN 0-887-30564-4. 320 pages.

Keeney, Ralph L. Summer 1994. Creativity in Decisionmaking with Value-
focused Thinking. Sloan Management Review. Volume 35, Number 4,
Pages 33–41. Reprint No. 3543.

Keeney, Ralph L. September-October 1994. Using Values in Operations
Research. Operations Research. Volume 42, Number 5, Pages 793–813.

Larman, Craig. 2003. Agile and Iterative Development: A Manager’s Guide.
Addison Wesley. ISBN 0-131-11155-8. 320 pages. See www.craiglarman.com
for sample chapters.

MacCormack, Alan (Harvard University), Chris F. Kemerer (University of
Pittsburgh), Michael Cusumano (MIT) and Bill Crandall (Hewlett-
Packard). September/October 2003 Exploring Trade-offs between Productivity
and Quality in the Selection of Software Development Practices. IEEE
Software. Volume 20, Number 5, Pages 78–85.

Marshall, Lisa J. and Lucy D. Freedman. 1995. Smart Work: The Syntax Guide
for Mutual Understanding in the Workplace. Kendall/Hunt Publishing
Company, 4050 Westmark Drive, Dubuque, Iowa 52002. ISBN
0-7872-0491-9. 158 Pages.

Mays R. G., C. L. Jones, G. J. Holloway and D. P. Studinski. 1990.
Experiences with Defect Prevention. IBM Systems Journal. Volume 29,
Number 1, Pages 4–32. A copy of this paper is available at http://www.
research.ibm.com/journal/.

Norman, Donald A. 1988. The Design of Everyday Things. Basic Books
(September 2002, Paperback). ISBN 0-465-06710-7. Earlier editions are
out of print.

Persico Jr., John and Gary N. McLean. April 1994. Manage With Valid
Rather Than Invalid Goals. Quality Progress. Pages 49–53.

Peters, Tom. 1994. The Tom Peters Seminar: Crazy Times Call for Crazy
Organizations. Vintage (Random House). ISBN 0-679-75493-8.

Peters, Tom. 2000. Reinventing Work, the Project 50. New York: Alfred A.
Knopf. ISBN 0-375-40773-1.

446 Competitive Engineering

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-FURTHER READING.3D – 445 – [445–
448/4] 29.6.2005 12:47PM

Petroski, Henry. 1992. The Evolution of Useful Things. New York: Vintage
Books (A division of Random House, Inc.). ISBN 0-679-74039-2,
288 pages.

Robbins, Harvey and Michael Finley. 1997. Why Teams Don’t Work: What
Went Wrong and How to Make It Right. London: Orion Business.
ISBN 0-75281-350-1.

Saaty, T. L. 1980. The Analytical Hierarchy Process. New York: McGraw Hill.
Sorensen, Reed. Software Technology Support Center. January 1995. A
Comparison of Software Development Methodologies. Crosstalk. Pages
12–18. A copy of this paper is available at http://www.stsc.hill.af.mil/cross-
talk/frames.asp?uri1/41995/01/Comparis.asp.

Strauss, S. and Ebenau, R. Copyright by AT&T. 1994. Software Inspection
Process. McGraw Hill. ISBN 0-07-062166-7. 363 Pages. First available
November 1993.

Weber, Matthias and Joachim Weisbrod. DaimlerChrysler Research RIC/SM
and SP. January/February 2003. Requirements Engineering in Automotive
Development – Experiences and Challenges. IEEE Software. Volume 20,
Number 1, Pages 16–24.

Weinberg, G. M. 1991. Quality Software Management: Systems Thinking
(Volume 1). New York: Dorset House. ISBN 0-932-63322-6. 336 pages.

Weinberg, G. M. 1992. Quality Software Management: First-Order Measure-
ment (Volume 2). New York: Dorset House. ISBN 0-932-63324-2. 360
pages.

Weinberg, G. M. 1994. Quality Software Management: Congruent Action
(Volume 3). New York: Dorset House. ISBN 0-932-63328-5. 328 pages.

Weinberg, G. M. 1997. Quality Software Management: Anticipating Change
(Volume 4). New York: Dorset House. ISBN 0-932-63332-3. 480 pages.

Further Reading 447

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-FURTHER READING.3D – 445 – [445–
448/4] 29.6.2005 12:47PM

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CONCEPT INDEX.3D – 449 – [449–460/
12] 30.6.2005 12:47PM

CONCEPT INDEX

Concept Number Concept Name Page

X*001 Aim 324
*002 Assumption 328
*003 Attribute 329
*003 Syn Characteristic 329
*003 Syn Property 329
*004 Author 330
*004 Syn Specification Writer 330
*004 Syn Writer 330
*005 Authority 330
*006 Basis 329
*006 Syn Base 333
*006 Syn Foundation 333
*007 Benchmark 333
*008 Sum of Performance See website & IE *283
*009 Benefit 334
*009 Syn Gain 334
*010 Performance to Cost Ratio 334
*013 Check, To [SQC] See SQC *051 & website
*014 Checker See website & SQC *051
*015 Checking Rate 336
*016 Checklist 336
*018 Note 379
*018 Syn Comment 379
*018 Syn Remark 379
*019 Special Causes See website
*019 Syn Chance Causes See website
*020 Common Causes See website
*020 Syn Assignable Causes See website
*021 Complex 337
*022 Component See website
*022 Syn Element See website
*024 Condition 338
*024 Syn Conditional Term 340
*024 Syn Pre-Requisite Condition 340
*025 Critical Failure Factor See Critical Factor *036 &

website
*026 Requirement 400
*028 Control Limits See website
*029 Control Chart See website
*030 Planguage 389
*030 Abbr PL 389
*030 Syn Planning Language 389

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CONCEPT INDEX.3D – 449 – [449–460/
12] 30.6.2005 12:47PM

Concept Number Concept Name Page

*033 Cost 344
*033 Syn Expense 344
*033 Syn Price 344
*034 Price of Nonconformance See website
*035 Credibility 345
*036 Critical Factor 345
*038 Consumer See website
*038 Syn Customer See website
*041 Defect Detection Process 345
*041 Acron DDP 345
*042 Defect Prevention Process 346
*042 Acron DPP 352
*043 Specification Defect See Error *274 & website
*043 Abbr Defect See Error *274 & website
*044 Definition 346
*044 Syn Defined 347
*044 Syn Defined As 347
*045 And 325
*046 Design Process 351
*047 Design Idea 350
*047 Syn Design 351
*047 Syn Means 351
*047 Syn Proposed Solution 351
*047 Syn Strategy 351
*048 Target 430
*048 Syn Target Level 438
*049 Delivery Cycle See Result Cycle *122 &

website
*049 Syn Delivery See Result Cycle *122 &

website
*051 Specification Quality Control 419
*051 Acron SQC 420
*051 Syn Inspection 371
*051 Syn Peer Review 420
*052 Downstream See website
*053 Effectiveness See website
*054 Efficiency See website
*054 Syn Cost Effectiveness See website
*055 Elementary 353
*056 Entry Condition See website & Process *113
*057 Entry Process See website & Process *113
*057 Abbr E See website & Process *113
*058 Estimate 354
*059 Estimate, To 354
*060 Remaining Major Defects/Page See website & SQC *051
*061 Evaluation Effort [SQC] See website & SQC *051
*062 Event 354
*063 Evidence 355
*064 Exit Condition See website & Process *113

450 Concept Index

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CONCEPT INDEX.3D – 449 – [449–460/
12] 30.6.2005 12:47PM

Concept Number Concept Name Page

*065 Exit Process See website & Process *113
*065 Abbr X See website & Process *113
*067 Fix Probability [SQC] See website & SQC *051
*068 Form See website
*069 Function 360
*074 Function Requirement 363
*080 Fuzzy 365
*081 Generic See website
*082 High-Level See website
*083 Hierarchical See website
*085 Drawn Icon See website
*086 Idea See website
*087 Impact 367
*088 Process Improvement Suggestion See website & SQC *051
*089 Logging [SQC] See SQC *051 & website
*091 Major Defect 374
*091 Abbr M 375
*091 Abbr Major 375
*093 Meter 376
*095 Metric 376
*096 Minor Defect 377
*096 Abbr m 377
*096 Abbr Minor Defect 377
*097 Mission 377
*098 Fail 359
*098 Syn Fail Level 360
*098 Syn Fail Limit 360
*098 Syn Failure 360
*098 Syn Warning 360
*098 Syn History Must (Avoid) 360
*099 Object See website & *145
*099 Syn System See website & *145
*100 Objective 379
*100 Performance Requirement 384
*101 Open-ended See website
*102 Owner 380
*103 Logical Page 374
*103 Abbr Page 374
*103 Acron LP 374
*105 Parameter 380
*105 Syn Specification Language Parameter 380
*106 Past 381
*106 Syn Past Level 381
*107 Place 387
*108 Plan See website
*109 Goal 366
*109 Syn Goal Level 367
*109 Syn Planned Goal 367
*109 Syn History Plan 367

Concept Index 451

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CONCEPT INDEX.3D – 449 – [449–460/
12] 30.6.2005 12:47PM

Concept Number Concept Name Page

*109 Syn History Planned Level 367
*010 Performance to Cost Ratio 386
*111 Policy See website
*112 Priority 389
*113 Process 392
*113 Syn Work Process 392
*114 Process Improvement 393
*115 Procedure 391
*118 Process Change Management Team See website & SQC *051
*118 Acron PCMT See website & SQC *051
*118 Syn Action Team See website & SQC *051
*119 Process Meeting See website & SQC *051
*119 Syn Causal Analysis Meeting See website & SQC *051
*119 Syn Process Brainstorming Meeting See website & SQC *051
*120 Specification Meeting See website & SQC *051
*120 Syn Inspection Meeting See website & SQC *051
*120 Syn Logging Meeting See website & SQC *051
*120 Syn Product Meeting See website & SQC *051
*122 Result Cycle 407
*122 Syn Result Production Cycle 408
*122 Syn Step Cycle 408
*123 Implementation Cycle See Result Cycle *122 &

website
*123 Syn Implementation See Result Cycle *122 &

website
*124 Qualifier 393
*125 Quality 395
*126 Optimum Checking Rate See website & Checking

Rate *015
*127 Record 399
*127 Syn Record Level 400
*128 Sum of Costs See website & IE *283
*128 Syn Resource Impact See website & IE *283
*129 Specification Rule See website & SQC *051
*130 Result See website
*131 Safety Factor 411
*132 Scale 412
*132 Syn Scale of Measure 413
*133 Set See website
*135 Source 418
*135 Syn Process Input Information 418
*136 Specific See website
*137 Specification 418
*137 Abbr Spec 418
*138 Standards 421
*138 Syn Work Process Standards 422
*139 Rate See website
*140 Statement See website
*141 Evo Step 356

452 Concept Index

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CONCEPT INDEX.3D – 449 – [449–460/
12] 30.6.2005 12:47PM

Concept Number Concept Name Page

*141 Syn Evolutionary Step 358
*141 Syn Step 358
*142 Relationship 400
*143 Scale Uncertainty 415
*144 Keyed Icon See website
*145 System [Planguage] 426
*145 Syn Object See also *099 427
*145 Syn System 427
*146 Tag 430
*146 Syn Identifier 430
*146 Syn Tag Name 430
*149 Task 431
*151 Term See website
*153 Time 431
*155 Trend 433
*155 Syn Trend Level 433
*157 Gist 365
*157 Syn Summary 366
*161 Icon 367
*162 Symbol See website
*163 Agent See website
*168 Plan Do Study Act Cycle 387
*168 Acron PDSA 381
*168 Acron PDSA Cycle 389
*169 Plan [PDSA] See SQC *051 & website
*170 Do [PDSA] See SQC *051 & website
*171 Study [PDSA] See SQC *051 & website
*172 Act [PDSA] See SQC *051 & website
*173 Sub-Process See website
*174 Status 422
*174 Syn State 422
*177 Process Description See website & Process

*113
*178 Process Input See website & Process

*113
*179 Process Output See website & Process

*113
*179 Syn Product See website & Process

*113
*180 Document See website
*181 Design Constraint 348
*181 Informal Syn Constrained Design 350
*181 Informal Syn Required Design 350
*181 Informal Syn Solution Constraint 350
*181 Syn Architectural Constraint 350
*181 Syn Design Restriction 350
*188 Planguage Concept 338
*189 Dependency 347
*189 Syn Depends On 348

Concept Index 453

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CONCEPT INDEX.3D – 449 – [449–460/
12] 30.6.2005 12:47PM

Concept Number Concept Name Page

*190 Designer See website
*190 Syn Systems Designer See website
*192 Architecture 325
*193 Systems Architect See website
*194 Interface See website
*196 Evolutionary 358
*196 Abbr Evo 358
*197 Review 408
*198 Scalar 412
*199 Resource 403
*208 Principle See website
*211 Planguage Term See website & Planguage *030
*218 Constraint 341
*220 Baseline To Target Pair See website & IE *283
*222 Subset See website
*223 Systems Engineering 428
*224 Engineering See website & Systems

Engineering *223
*233 Stakeholder 420
*234 User See website
*235 Client See website
*235 Syn Customer See website
*237 Decision-maker See website
*237 Syn Decision-taker See website
*239 Specify, To See website
*244 Wish 437
*244 Syn Wish Level 438
*244 Syn Wish Target 438
*249 Binary 334
*253 Role 409
*254 Template See website
*256 Test 432
*259 Rationale 398
*259 Syn Justification 399
*259 Syn Reason 399
*262 Systemic See website
*263 Root Causes See website
*264 Supra See website
*265 Sibling See website
*266 Kid See website
*267 Parent See website
*269 Value 435
*269 Syn Worth 436
*270 Problem See website
*272 Credibility Rating See website & Credibility

*035
*273 Side Effect 417
*274 Error 353
*275 Malfunction See Error *274 & website

454 Concept Index

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CONCEPT INDEX.3D – 449 – [449–460/
12] 30.6.2005 12:47PM

Concept Number Concept Name Page

*276 Issue 372
*277 Editor See website
*279 Quality Control See website
*279 Acron QC See website
*281 Team Leader See website & SQC *051
*281 Syn Moderator See website & SQC *051
*281 Syn SQC Leader See website & SQC *051
*281 Syn SQC Team Leader See website & SQC *051
*282 Quality Assurance See website
*282 Acron QA See website
*283 Impact Estimation 368
*283 Acron IE 368
*284 Planning [SQC] See SQC *051 & website
*285 Entry [SQC] See SQC *051 & website
*285 Syn SQC Entry See SQC *051 & website
*286 Kickoff [SQC] See SQC *051 & website
*287 Checking [SQC] See SQC *051 & website
*288 Edit [SQC] See SQC *051 & website
*289 Edit Audit [SQC] See SQC *051 & website
*289 Syn Follow Up See SQC *051 & website
*290 Exit [SQC] See SQC *051 & website
*290 Syn SQC Exit See SQC *051 & website
*291 Upstream See website
*293 Debugging See website
*294 Non-Commentary 378
*295 Readership 399
*295 Syn Intended Readership 399
*296 Editor Advice Log See website & SQC *051
*296 Syn Author Advice Log See website & SQC *051
*296 Syn Issue Log See website & SQC *051
*297 Report [SQC] See SQC *051 & website
*298 Sample See website & SQC *051
*299 Chunk See website & SQC *051
*300 Item [SQC] See website & SQC *051
*301 Question Of Intent See website & SQC *051
*302 Expression See website
*303 Master Definition 375
*306 Percentage Impact 381
*306 Syn %Impact 381
*306 Syn Incremental Percentage Impact 381
*306 Syn Percentage Incremental Impact 381
*307 Incremental Scale Impact 381
*308 Cell See website & IE *283
*309 Risk 409
*309 Syn Threat 409
*310 Uncertainty 434
*311 Waterfall Method See website
*312 Before 333
*313 After 324

Concept Index 455

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CONCEPT INDEX.3D – 449 – [449–460/
12] 30.6.2005 12:47PM

Concept Number Concept Name Page

*314 During 352
*318 Incremental Development 369
*319 Data See website
*320 Information See website
*321 Verification See website
*322 Evo Plan 356
*322 Syn Evolutionary Delivery Plan 356
*322 Syn Evolutionary Plan 356
*328 Ideal Historical See website
*331 Input See website
*331 Syn System Input See website
*332 Version 436
*332 Syn Edition 436
*332 Syn Instance 436
*333 Rule 409
*334 Impacts 369
*337 Level 374
*337 Syn Point 374
*339 Fault See Error *274 & website
*339 Syn Bug See Error *274 & website
*339 Syn System Defect See Error *274 & website
*340 Sum for Requirement See website & IE *283
*340 Syn Sum Requirement See website & IE *283
*342 Backroom 331
*343 Frontroom 360
*344 Funder See website
*349 Value To Cost Score See website
*351 Baseline 331
*353 Kin 373
*355 Evolutionary Project Management 358
*355 Abbr Evo 355
*355 Acron RDM 358
*355 Syn Evo Management 358
*355 Syn Evolutionary Delivery Management 358
*355 Syn Milestone Approach 358
*355 Syn Rapid Delivery Management 358
*355 Syn Result Delivery 358
*355 Syn Synch-and-Stabilize 358
*356 Acquisition See website
*357 Integration See website
*358 Deployment See website
*359 Gap 365
*359 Syn Residue¼Very Strange Term! 365
*360 Quality Level 396
*360 Syn Major Defect Density 396
*360 Syn Specification Quality Level 396
*363 Parallel Development See website
*364 Serial Development See website
*370 Evo Step Specification See website & Evo *355

456 Concept Index

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CONCEPT INDEX.3D – 449 – [449–460/
12] 30.6.2005 12:47PM

Concept Number Concept Name Page

*370 Syn Evolutionary Step Specification See website & Evo *355
*370 Syn Step Specification See website & Evo *355
*372 Milestone See website
*374 Domain See website
*375 Global See website
*376 Local See website
*381 Scale Qualifier 414
*381 Syn Embedded Scale Qualifier 415
*381 Syn Scale Parameter 415
*383 Percentage Uncertainty 381
*385 Quantify, To 396
*386 Measure, To 375
*389 Except 359
*390 Rework See website
*391 Includes 369
*396 Sponsor See website
*398 Type 434
*398 Syn Concept Type 434
*399 If 367
*403 Scale Impact 413
*403 Syn Absolute Impact 414
*404 Stretch 423
*404 Syn Stretch Level 424
*404 Syn Stretch Target 424
*405 Safety Deviation 410
*407 Production Cycle See Result Cycle *122 &

website
*407 Syn Production See Result Cycle *122 &

website
*408 Strategic Management Cycle See Result Cycle *122 &

website
*408 Syn Evo Management Cycle See Result Cycle *122 &

website
*408 Syn Head (of Evo Model) See Result Cycle *122 &

website
*408 Syn Strategic Management See Result Cycle *122 &

website
*410 Scribe See website & SQC *051
*411 Role [SQC] See SQC *051 & website
*412 Is Impacted By 371
*412 Syn Impacted By 372
*413 Development Cycle See Result Cycle *122 &

website
*414 Is Supported By 372
*414 Syn Supported By 372
*415 Supports 424
*416 Description 348
*418 Critical Success Factor See Critical Factor *036 &

website

Concept Index 457

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CONCEPT INDEX.3D – 449 – [449–460/
12] 30.6.2005 12:47PM

Concept Number Concept Name Page

*419 Scope 416
*420 Function Target 364
*422 Vision 436
*423 Ambition 324
*424 Continuous Process Improvement 344
*424 Acron CPI 344
*429 Resource Saving 406
*429 Syn Saving 406
*431 Resource Requirement 405
*433 Impact Estimate 367
*433 Syn Impact 367
*434 Performance 382
*436 Resource Target 406
*436 Syn budget See also Budget *480 406
*438 Performance Constraint 383
*439 Performance Target 386
*439 Syn goal See also Goal *109 386
*440 Survival 424
*440 Syn Survival Level 425
*440 Syn Survival Limit 425
*446 Scale Variable 415
*447 Default See website
*447 Syn Default Option See website
*447 Syn Default Value See website
*453 Quality Requirement See website
*453 Syn Objective See *100
*456 Specification Variable See website
*456 Syn Variable See website
*459 Workload Capacity 438
*459 Syn Capacity 438
*459 Syn Work Capacity 438
*459 Syn Workload 438
*459 Syn Workload Capability 438
*460 Guideline See website
*460 Syn Advice See website
*460 Syn Hint See website
*460 Syn Recommendation See website
*460 Syn Suggestion See website
*460 Syn Tip See website
*465 Dynamic See website
*466 Statistical Process Control See website
*466 Acron SPC See website
*469 Function Constraint 361
*472 Design To Cost See website
*475 Deviation 352
*475 Syn Variance 352
*478 Resource Constraint 404
*480 Budget – See also Resource Target *436 334
*480 Syn Budget Level 335

458 Concept Index

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CONCEPT INDEX.3D – 449 – [449–460/
12] 30.6.2005 12:47PM

Concept Number Concept Name Page

*480 Syn Planned Budget 335
*480 Syn Historical Plan 335
*480 Syn Historical Planned Level 335
*484 View See website
*484 Syn Perspective See website
*484 Syn Viewpoint See website
*487 Configuration Management See website
*488 Budget, To See website
*489 Assets See website
*496 Internal See website
*497 External See website
*498 Condition Constraint 340
*498 Syn Restriction 341
*499 Architecture Engineering 429
*499 Syn Architecting 430
*499 Syn Architectural Engineering 429
*501 Design Engineering 350
*506 Specification Element See website
*507 Background 330
*508 Requirement Specification 403
*508 Syn Requirements Specification 403
*514 Or 379
*516 Inherited See website
*521 Function Design 362
*529 Specification Issue See Error *274 & website
*529 Abbr Issue See Error *274 & website
*530 User-Defined Term 435
*543 Specification Review Rule See website
*544 Workload Capacity Requirement See website
*544 Syn Capacity Requirement See website
*544 Syn Work Capacity Requirement See website
*544 Syn Workload Capability Requirement See website
*544 Syn Workload Requirement See website
*547 Method See website
*549 Or Worse 380
*550 Or Better 379
*551 Until 434
*552 Range 397
*554 Due 352
*554 Syn Deadline 352
*554 Syn Due Date 352
*557 Function, To See website
*560 Units of Measure See website
*564 Systems Architecture 427
*564 Syn Systecture 428
*570 Software See website
*572 Software Engineering 417
*586 Design Specification 351
*586 Abbr Design Spec 352

Concept Index 459

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-CONCEPT INDEX.3D – 449 – [449–460/
12] 30.6.2005 12:47PM

Concept Number Concept Name Page

*586 Syn Informal Technical Design 352
*586 Syn Informal The Design 352
*591 Value Chain See website
*592 Values See website
*598 Problem Definition See website
*599 Need See website
*601 Validation See website
*602 Catastrophe 335
*602 Syn Catastrophe Level 336
*602 Syn Catastrophe Limit 336
*602 Syn Informal Catastrophic Failure 336
*602 Syn Informal Death 336
*602 Syn Informal Non-Survival 336
*605 Landing Zone 373
*606 Limit 374
*614 Requirements Engineering 403
*614 Syn Requirement Engineering 403
*616 Consists Of 341
*617 Architecture Specification 328
*617 Syn Architectural Specification 328
*618 Architectural Description [IEEE] 326
*621 Is Part Of 372
*622 Resource Saving Requirement 406
*632 Commentary 337
*633 Core Specification 344
*633 Syn Implementable Specification 344
*634 Requirement Specification [Process] See website & Requirements

Engineering *614
*634 Syn Requirements Specification [Process] See website & Requirements

Engineering *614
*635 Value to Cost Ratio See website
*636 Output See website
*636 Syn Product See website
*636 Syn Result See website
*636 Syn System Output See website
*637 Safety Margin 411

460 Concept Index

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-AUTHOR INDEX.3D – 461 – [461–464/4]
30.6.2005 12:47PM

AUTHOR INDEX

Adams, Douglas:
the answer being 42 in ‘The Hitchhiker’s

Guide to the Galaxy’, 152
Alcatel:
SQC for product development purposes,

225
Aldridge Jr., E. C.:
Under Secretary of Defense, 295

Ansoff, H. Igor:
design process, 203
gap analysis, 210

Anthony, R. N.:
abandoned procedures, 391

AT&T:
PDSA cycle, 294

Bailey, Carolyn:
attributing quote to Deming, 324

Basili, V., 293
Evolutionary Project Management, 358

Bellcore, 223
Bernstein:
on risk, 409

Blackmore, Susan:
design and evolution, 351

Blanchard (DoD)
definition of Systems Engineering, 428

Boehm, Barry W.:
major influence, xii

Boeing:
finding defects, 258
hardware use of SQC, 225

Boeing (Douglas Aircraft)
effect of SQC, 223

Boeing, Renton:
effect of SQC, 223

British Aerospace, Eurofighter Project,
Wharton:

defect reduction, 224
Brodie, Lindsey:
acknowledgement, xv

Bull HN:
SQC checking efficiency/effectiveness,

232

Calaprice, Alice:
editor of ‘The Expanded Quotable

Einstein’, 4
Capablanca:
‘next move’ principle, 310

Carrol, Lewis:
Alice and Humpty Dumpty text, 323
Alice and the Cheshire Cat text, 79

Churchill, Winston:
vision statement, 52

Cotton, Todd:
Evo within HP, 294

Crosby, Philip B.:
continuous process improvement, 29
defect prevention, xviii
major influence, xii

Daimler Chrysler:
idea of Due, 352
synonyms for Status, 423

Dalziel, Thomas:
wood-engraving of Alice, 79, 323

Danish Technical Institute, Lyngby:
SQC checking efficiency/effectiveness,

232
Deming, W. Edwards:
as origin of DPP, 259
continuous process

improvement, 28
definition of Aim, 324
major influence, xii
operational definitions, 376
PDSA cycle, xviii, 5, 25, 294, 387
PDSA cycle: letter to

Tom Gilb, 388
process improvements, 229
‘‘Survival is not compulsory’’, 318

Dion:
productivity increases, 227

Douglas Aircraft (now Boeing)
effect of SQC, 223
finding defects, 258
hardware use of SQC, 225
use of Evo, 294

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-AUTHOR INDEX.3D – 461 – [461–464/4]
30.6.2005 12:47PM

Einstein, Albert:
‘‘means and ends’’ quote, 4

Ericsson:
Japanese Base Station, 41
SQC for product development purposes,

225

Fagan, Michael E.:
design and code inspections, 224
inspection method, 371
SQC failures to fix rate, 248

Federal Aviation Authority (FAA)
definition of Systems Engineering, 428

Fossnes, Terje:
idea for Catastrophe, 336

Fuenfhausen, Pete:
idea for Stretch, 424

General Electric:
Jack Welch, 310

Gilb, Kai:
acknowledgement, xv
idea for Trend, 286, 367, 433

Grady:
HP results from SQC, 237

Graham, Dorothy:
idea for Wish, 438

Haskins, Cecilia:
idea for Catastrophe, 336

Hayes, R. H. et al.:
on quantification, 413

Heisenberg, Werner:
limited range of applicability, 321

Hewlett Packard
10X policy, 52
Evolutionary Project

Management, 294
need for an SQC champion, 252
savings from process improvement, 29
SQC for hardware product planning, 225
vision statement, 52

Howard Hughes:
Spruce Goose, 350

HP see Hewlett Packard
results from SQC, 237

IBM Federal Systems Division:
Evolutionary Project Management, 293

IBM Rochester Labs, MN:
stable SQC effectiveness, 247

IBM UK:
SQC effectiveness 95%, 247

IBM, xviii
design and code inspections, 224
SQC effectiveness 60–90%, 247

Intel, xviii
Foreword by Erik Simmons, vii
source of landing zone, 373
teaching example for setting scalar

levels, 130

Jet Propulsion Labs:
Evolutionary Project Management, 358
SQC checking efficiency/effectiveness, 232

Jevons:
major influence, xii

Juran, Joseph M.:
as origin of DPP, 261
continuous process improvement, 28
inspection method, 372
major influence, xii
PDSA cycle, xviii, 25, 296

Keeney, Ralph L.:
major influence, xii

Kelly, John:
SQC checking efficiency/effectiveness, 232

Kelvin, Lord:
major influence, xii
on quantification, 164

Kennedy, John F.:
vision statement, 52

Keynes, J. M.:
distinguishing uncertainty, 434

King Jr., Martin Luther:
‘I have a dream’, 437

Knight, Frank:
distinguishing risk, 409
distinguishing uncertainty, 434

Koen, William:
major influence, xii
on engineering, 319

Larman, Craig:
Evolutionary Project Management, 358

Lockheed Martin see IBM Federal Systems
Division

Loral see IBM Federal Systems Division

Maier, Mark W.:
Foreword, vii

Malotaux, Niels:
from ‘archi-tecton’, 425

462 Author Index

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-AUTHOR INDEX.3D – 461 – [461–464/4]
30.6.2005 12:47PM

May, Elaine:
Evo within HP, 294

MEI/Thorn EMI:
cost savings of using SQC, 251

Mills, Don:
acknowledgement, xv
definition of Assumption, 328

Mills, Harlan:
Evolutionary Project Management,

293, 358
process control, 26

Morris, Peter W. G.:
requirements, 37
the need for evolutionary

methods, 318
Muller, Gerrit:
Stakeholder (diagram), 420

Nielsen, Søren:
SQC checking efficiency/effectiveness, 232

Nokia:
idea for Stretch, 424

Norwegian Church Aid:
case study, 131

Peters, Tom:
major influence, xii
technology trends, 3

Philips:
Stakeholder (diagram), 420

Plutarch:
‘‘to err’’, 354

Pressman, Roger:
Foreword, vii

Ramo, Simon:
on quantification, 143

Raytheon:
defect reduction, 224
ROI for SQC, 251

Reeve, Trevor:
cost savings of using SQC, 250
defect sampling, 224

Russell, Bertrand:
if experts disagree, 321

Scottish Widows:
idea for Wish, 438

Sema UK:
SQC effectiveness 95%, 247

Shakespeare:
‘‘What’s in a name?’’, 321

Shewhart, Walter:
inspection method, 371
PDSA cycle, 25, 294, 319, 387
PDSA cycle: usage of Check, 388

Siemens:
SQC for product development purposes,

225
Simmons, Erik:
acknowledgement, xv
Foreword, vii
implicit assumptions about scalar levels,

130
use of Landing Zone, 373

Simon:
design process, 203

Smith, Adam:
real price of everything, 183

Synopsys, CA USA:
use of Rationale, 399

Systect, Inc., 425

Tao Teh Ching:
principles of, 311

Tenniel, John:
Alice and Humpty Dumpty illustration,

323
Alice and the Cheshire Cat illustration, 79

Thorn EMI:
defect sampling, 224
finding defects, 258

Tzu, Lao, 311

United Defense, Minnesota:
use of Kin concept, 373

US Department of Defense (DoD)
Incremental Development, 370
MIL-STD-498, 293

Von Clausewitz:
‘On War’, 310

Von Moltke:
on survival of a plan of operation, 310

Weber, Jens:
idea of Due, 352

Weinberg, Gerald M.:
major influence, xii

Welch, Jack:
CEO General Electric, 310
measures and rewards, 413
on Stretch, 424
on Trend, 433

Author Index 463

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-AUTHOR INDEX.3D – 461 – [461–464/4]
30.6.2005 12:47PM

Weller, Edward:
SQC checking efficiency/

effectiveness, 232
Wilde, Oscar:
on Value, 436

Woodward, Stuart:
acknowledgement, xv

Young, John:
vision statement, 52

Young, Ralph:
requirements, 37

Zimmer, Barbara:
Evo within HP, 294

464 Author Index

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-SUBJECT INDEX.3D – 465 – [465–474/
10] 30.6.2005 12:55PM

SUBJECT INDEX

‘‘ . . . ’’ see Note, as basic Planguage parameter
[. . .] see Qualifier
{ . . . } see Set parentheses, as basic Planguage concept
<- see Source, as basic Planguage parameter
< . . .> see Fuzzy, as basic Planguage parameter

Note: Bold page numbers refer to Planguage Concept Glossary entries

Adaptability:
dynamic, 3
example of hierarchy for, 159
examples of Scale for, 159

After, 324
Agile Software Development, 294
Aim, 324
Alice and Humpty Dumpty, 323
Alice and the Cheshire Cat, 79
Ambiguity, avoiding, 41
Ambition, 324
as scalar attribute, 116

And, 325
Architectural Description [IEEE], 326
Architecture, 9, 47, 48, 51, 57, 59, 164, 206,

219, 280, 325
Architecture Engineering, 327
Architecture Specification, 328
Assumption, 328
as basic Planguage parameter, 15

Attribute, 329
definition of, 47
design, 48
function, 47, 93
performance, 48
in Planguage architecture, 59
resource, 48

Attributes:
relationships between, 76
scalar, 116
system, 47

Author, 330
SQC, 240

Authority, 330
as basic Planguage parameter, 14

Availability, example of hierarchy
for, 153

Background, 330
Backroom, 331
in Evo, 313
in Evo (diagram), 316

Baseline, 331
Basis, 332
Before, 333
Benchmark, 333
in Planguage architecture, 60

Benchmarks:
as scalar attributes, 116
understanding current, 40

Benefit, 334
Bibliography, 439–43
Bill of rights for company

communication, 74
Binary, 334
Boeing, xviii
Book conventions, xiii
formatting of dates, xiv
glossary concepts, xiv
terminology, xiii

Budget, 334
as scalar attribute, 116, 120

Budgets, 167–84

Calculation, effect of defects on project
timescales, 27

Case study:
airborne command and control system,

102, 161
cost savings of using SQC, 250
design idea specification, 197
design ideas masquerading as requirements,

214
Evolutionary Project Management, 296,

316–18

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-SUBJECT INDEX.3D – 465 – [465–474/
10] 30.6.2005 12:55PM

Case study (Continued)
identifying stakeholders and functions, 87
Impact Estimation, 285
Norwegian Church Aid, 131
Persincom, 284
Proposal to the Board – Part 1, 71
Proposal to the Board – Part 2, 87
scale definition for Usability.Intuitiveness, 162
separating requirements and design ideas, 69
specifying functions, 100
specifying performance requirements for a

water supply, 131
SQC at defense electronics manufacturer, 250
the German telecommunications company,

314–16
UK, Naval Radar System, 296
UN and refugees by bus, 198
US, Army Personnel Planning, 283

Catastrophe, 335
Champion for SQC, 252
Change control, corporate policy, 33
Checker, SQC, 237
Checking rate, 336
basic definition, 229

Checking, SQC sub-process, 239
Checklist, 336
basic definition, 230

Cheshire Cat’s advice to Alice, 79
Commentary, 337
Communication, interdisciplinary, 5
Competitive Engineering:
background to writing, xii
format of, xx
structure of, xx

Complex, 337
Concept [Planguage], 338
Concepts:
as standards, 10
Planguage basic generic, 14

Condition, 338
constraint in requirements, 38
constraint, introduction to, 57, 340
in Planguage architecture, 59

Conditions:
qualifying scalar attributes, 119
using qualifiers to specify, 65

Conference, a worked example showing design
engineering, 194

Connectability, a definition for, 157
Consists of, 341
Constraint, 341
condition, 38, 340

design, 38
in Planguage architecture, 59

Constraints:
adherence to, 69
as scalar attributes, 116
introduction to, 69
viewpoints on, 70

Continuous process improvement, 5, 344
corporate policy, 32
introduction to, 25
at Raytheon, 28

Core Specification, 344
Corporate quality policy, 32
Cost, 344
Cost minimization, 192
Cost of perfection, 169
Costs, 167–84
estimation in advance unlikely for complex

systems, 170
infinite costs with perfection, 169
numeric performance levels and associated

costs, 169
Planguage methods for controlling costs,

183
relationship between costs and performance

delivery, 168
specify down to a more detailed level, 170
use of design to cost, 171
use of Evolutionary Project Management,

171, 177
use of Impact Estimation, 179

Credibility, 345
credibility ratings table, 274

Critical success factors, corporate policy, 32

Date, book conventions, xiii
DDP, 345
Defect Detection Process, 345
basic definition, 228

Defect Prevention Process, 346
basic definition, 228

Defect, basic definition, 229
Defects, calculation of effect on project

timescales, 27
Definition, 346
Definition of system, EIA/IS-731.1, 426
Definition, as basic Planguage parameter, 14
Delivery cycle, as component of Planguage

(diagram), 11
Dependency, 347
Description, 348
as basic Planguage parameter, 14

466 Subject Index

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-SUBJECT INDEX.3D – 465 – [465–474/
10] 30.6.2005 12:55PM

Design:
as a system attribute, 51
overview of a design process, 203

Design constraint, 348
introduction to, 57
in requirements, 38
within requirement specifications, 193

Design Engineering, 187–220, 350
as an iterative process, 187
as component of Planguage

(diagram), 11
difference from design, 187
overview (diagram), 18
and Planguage methods, 193
principles, 210
process description, 202

Design for risk, 193
Design gap, (figure), 216
Design ideas, 189–220, 350
alternative design ideas and risk, 192
consider any design idea, 189
handling potential design ideas, 190
identifying during requirement

specification, 190
selecting the best combined set, 191
selecting the best from alternatives, 191
specification, 197
the need for alternatives, 191
variation in types of design, 189

Design Process, 351
Design optimization, 192
Design specification, 351
rules, 200
template, 217

Design to cost, 192
Design to cost for controlling costs, 171
Design to performance targets within cost, 193
Development cycle, as component of

Planguage (diagram), 11
Deviation, 352
Document, icon, 31
DoD Evolutionary Acquisition, 26, 295
DPP, 352
Douglas Aircraft, xviii
Due, 352
During, 352
Dynamic adaptability, 3

Edit audit, SQC sub-process, 242
Edit, SQC sub-process, 242
Editor, SQC, 238
EIA/IS-731.1, definition of System, 426

Elementary, 353
Ends, separation from means, 39
Entry conditions, generic, 22
Entry conditions, introduction to, 12
Entry, SQC sub-process, 239
Environmentally friendly, aworked example, 142
Error, 353
Ericsson, xix
Estimate, 354
Estimate, to, 354
ETX, Entry Task Exit concept for

processes, 13
Event, 354
Evidence, 355
Evo, 355
see Evolutionary Project Management

Evo Plan, 356
Evo steps, 356
tips on how to decompose a system into Evo

steps, 314
Evolutionary, 358
Acquisition, DoD, 295

Evolutionary Project Management, 293-319,
358

a practical example: Naval Radar System, 296
as component of Planguage (diagram), 11
backroom, 311
backroom (diagram), 316
blank template for Evo step specification, 317
case study: the German telecommunications

company, 314
‘Cleanroom’, 293
for controlling costs, 171
corporate policy, 32
delivery cycle: part of ‘The Body’, 306
dynamic priority (diagram), 318
Evo plan specification, 302–3
example of filled-in template for Evo step

specification, 313
frontroom, 311
frontroom (diagram), 316
overview of an Evo plan (diagram), 309
overview of Evo process (diagram), 19
overview of result cycle (diagram), 306
overview of the ‘method’, 297
planning policy, 296
practical experience with using Evo, 293
principles, 310
process description, 304–9
rules, 302
simplified, overview (diagram), 307
simplified, process description, 307–9

Subject Index 467

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-SUBJECT INDEX.3D – 465 – [465–474/
10] 30.6.2005 12:55PM

Evolutionary Project Management
(Continued)

step content, 298
step dependency, 299
step name, 299
step sequencing, 299
step specification, 298–301
strategic management cycle: ‘The Head’,

304
tips on how to decompose a system into Evo

steps, 314
underlying principles of, 294
using IE tables for Evo plans, 311–12

Except, 359
Exit conditions, generic, 23
Exit conditions, introduction to, 13
Exit, SQC sub-process, 241
Extendability, an example Scale for, 157
External in Planguage architecture, 59

Fail, 359
as scalar attribute, 116, 120, 121

Failure, quantifying, 39
Flexibility:
analyzing, 43
example of hierarchy for, 157

Forms:
as standards, 10
SQC, 232
SQC, simplified, 242

Frontroom, 360
in Evo, 311

Frontroom in Evo (diagram), 316
Function, 360
as a system attribute, 47
attributes, 93
introduction to, 83
qualifiers, 94
separation, from design idea, 83
specification, 89, 91
example of, 102
template, 106

Function analysis, Memo to the Board of
Directors, 87

Function Constraint, 361
Function Design, 362
Function requirement, 363
introduction to, 54, 83
in requirements, 37

Function requirement specification, 83, 89
process description, 97
rules, 94
simplified process description, 98

Function requirement specification, example
of, 102

Function specification, rules, 94
Function Target, 364
Functional relationships, 90
Functionality, measuring, 101
Functions, 83–106
complex, 100
elementary, 100
examples of, 86
referencing, 90
sibling, 93
supra, 92

Fuzzy, 365
as basic Planguage parameter, 15

Gap, 365
Generic:
entry and exit process, 21
entry conditions, 22
exit conditions, 23
in Planguage architecture, 59
project, principles, 23
project, process description, 19

Gist, 365
as basic Planguage parameter, 14

Global in Planguage architecture, 59
Glossary, 321–438
Glossary concepts, book conventions, xiv
Goal (small ‘g’), definition of, 54
Goal, 366
as scalar attribute, 116, 120, 121

Guidelines for assessing SQC, 231

Humpty Dumpty’s advice to Alice, 323

Icon, 367
Icons:
basic generic, 14
drawn:
conditions, 75
design, 75
function, 75
performance, 75
resource, 75
system, 75

keyed, resource, 181
IE, 367
see Impact Estimation

IE table:
a simple example, 270
comparison of apples and oranges,

265
example of skyscraper format, 286

468 Subject Index

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-SUBJECT INDEX.3D – 465 – [465–474/
10] 30.6.2005 12:55PM

US Army Personnel Planning, 283
using for Evo plans, 311–12

IEEE 610.12-1990, definition of
Requirement, 400

IEEE P1220, definition of Requirement, 400
If, 367
Impact, 367
Impact Estimate, 367
Impact Estimation, 261–90, 368
alternatives, 280
as component of Planguage (diagram), 11
basic definition of IE concepts, 270–5
case study: USArmyPersonnel Planning, 283
credibility ratings table, 274
dependencies, 280
IE table cell data, 279
interactions amongst design ideas, 280
keyed icons, 287
level of detail to use, 280
overview of IE process (diagram), 274
overview of process for creating an IE table

(diagram), 275
presentation of IE tables, 285
principles, 278
priority management, 281–3
process description, 276
purposes for use of, 264
purposes for use of (diagram), 288
risk management, 283
rules, 271
safety margins, 283
side effects, 280
skyscraper representation of IE table, 286
software tools supporting IE, 286
understanding mathematical inaccuracy, 280
using IE tables for Evo plans, 311–12
a worked example for Learning, 265–7

Impacts, 369
Implementation cycle, as component of

Planguage (diagram), 11
Improveability, an example Scale for, 158
Includes, 369
INCOSE, definition of Systems

Engineering, 428
Incremental Development, 369
Incremental Scale Impact, 370
Inspection, 371
Installability, an example definition of, 157
Integrity, example of Scale for, 155
Interchangeability, an example definition of,

157
Internal in Planguage architecture, 59
Is Impacted By, 371

ISO 9000, definition of Process, 392
ISO 9000, definition of System, 426
ISO/IEC 15288, definition of Stakeholder,

420
ISO/IEC 15288, definition of System, 426
Is Part Of, 372
Is Supported By, 372
Issue, 372
basic definition, 228

Kickoff, SQC sub-process, 240
Kin, 373
Kin documents, basic definition, 231

Landing Zone, 373
Language conventions, as standards, 10
Leadership, 5
Level, 374
Limit, 374
Linux, 294
Local in Planguage architecture, 59
Logical Page, 374
Love, specification of, 145

Main specification, basic definition, 230
Maintainability:
example of Scale for, 155
hierarchy for, 153

Major defect, 374
basic definition, 229

Master Definition, 375
Means, separation from ends, 39
Measure, To, 375
Measure, managing what you, 140
Meter, 376
as scalar attribute, 114

Meters, finding and developing, 139
Meters, reference library for, 140
Metric, 376
MIL-STD-498, 26
MIL-STD-498, Evolutionary Project

Management, 293
MIL-STD 499B, definition of Performance, 382
MIL-STD 499B, definition of Performance

Requirement, 386
MIL-STD 499B, definition of System, 427
Minor Defect, 377
Mission, 377
as a top-level function, 100

Motivation, 5

No cure, no pay, 8
Nokia, xviii

Subject Index 469

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-SUBJECT INDEX.3D – 465 – [465–474/
10] 30.6.2005 12:55PM

Non-Commentary, 378
Note, 379
as basic Planguage parameter, 14

Objective, 379
definition of, 52

Open Source Methods, 294
Optimum checking rate, basic definition, 229
Or, 379
Or Better, 379
Organizational change, 5
Or Worse, 380
Owner, 380
as basic Planguage parameter, 14

Page, basic definition, 229
Parameter, 380
Parameters:
Planguage basic generic, 14
for scalar attributes, 120

Past, 381
as scalar attribute, 116, 120, 121

PDSA, 381
see Plan-Do-Study-Act cycle, process control

Percentage Impact, 381
Percentage Uncertainty, 381
Performance, 109–36, 382
as a system attribute, 47
attributes, 111
hierarchy for, 153–5
introduction to, 111

Performance Constraint, 383
Performance Requirement, 384
handling complex, 127
introduction to, 54
in requirements, 37
specification see Scalar attributes

Performance requirement specification,
template see Scalar requirement template

Performance Target, 386
Performance to Cost Ratio, 386
Philips, xviii
Place, 387
Plan-Do-Study-Act cycle, 387
process control, 25

Plan-Do-Study-Act process-cycle, icon, 31
Planguage, 389
architecture, 59
basic generic concepts, 14
basic generic parameters, 14
basics and process control, 1–34
concepts, 9
concepts as a component of (diagram), 11

grammar, 9
grammar as a component of (diagram), 11
icons, 9
icons as a component of (diagram), 11
major influences, xii
methods, xviii
parameters, 9
parameters as a component of (diagram), 11
specification language, xviii, 30
supporting priority determination, 213
syntax rules, 9

Planguage methods, xvii
for controlling costs, 183

Planguage processes, as a component of
Planguage (diagram), 30

Planguage specification language, xvii
as a component of (diagram), 11

Planguage term, as basic Planguage concept, 14
Planning, SQC sub-process, 239
Policies, standards, 10
Policy:
a corporate quality standard, 32
for design, 219
see also Design optimization

evolutionary planning, 296
for impact estimation, 263

Portability, an example Scale for, 158
Principles:
Design Engineering, 210
Evolutionary Project Management, 310
function requirement specification, 99
function specification, 99
generic project, 23
Impact Estimation, 278
performance requirements, 124
requirement specification, 64
resource requirements, 176
scale definition, 151
Specification Quality Control, 246

Principles of Software Engineering
Management, xii

Principles of Tao Teh Ching, 311
Priority, 389
determination, 211
dynamic priority, 214
use of weights, 212

strategy see Design optimization
Procedure, 391
introduction to, 13

Process, 392
icon, 31
improvement through SQC, 223

Process control, reasons for, 27

470 Subject Index

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-SUBJECT INDEX.3D – 465 – [465–474/
10] 30.6.2005 12:55PM

Process description:
as component of Planguage (diagram), 30
Design Engineering, 10, 202
Evo: delivery cycle: part of ‘The Body’,

306
Evo: strategic management cycle: ‘The

Head’, 304
Evolutionary Project Management,

10, 304
function requirement specification, 97
generic entry and exit, 21
generic project, 19
Impact Estimation, 10, 276
introduction to, 12
performance requirement specification,

123
requirement specification, 10, 62
resource requirement specification, 175
scale definition, 149
simplified, Evolutionary Project

Management, 307–8
simplified, function requirement

specification, 98
simplified, Specification Quality Control,

242–5
Specification Quality Control, 10, 239

Process Improvement, 393
Process Meeting, SQC sub-process, 241
Production cycle, as component of Planguage

(diagram), 11
Project work process, as component of

Planguage (diagram), 30

Qualifier, 393
as basic Planguage parameter, 14
definition of, 66

Qualifiers:
embedded within a Scale, 146
using to specify conditions, 65
with regard to Evo steps, 68
with regard to scope, 68

Quality, 395
example of hierarchy for, 153
performance attribute, 111
in requirements, 37

Quality level, 396
as basic Planguage parameter, 14
in Planguage architecture, 59

Quality policy, corporate standard, 32
Quality requirement:
analyzing a, 43
introduction to, 53

Quantify, To, 396

Quantification, by Simon Ramo, 141
Quantifying:
potential requirements, 40
success and failure, 39
survival, 40

Range, 397
Rapid feedback, 3
Rate:
checking, 10, 229, 232
optimum checking, 229
work, 10

Rationale, 398
Raytheon, continuous process improvement,

28–9
Readership, 399
as basic Planguage parameter, 14

Record, 399
as scalar attribute, 116, 120, 121

Relationships, 400
between attributes, 76

Reliability, example of Scale for, 154
Remaining major defect density, estimating,

249
Remaining major defects, basic definition, 230
Requirement, 400
analyzing a, 43
complex, 46
elementary, 46
in Planguage architecture, 59
types, 51

Requirements Engineering, 403
Requirement specification, 403
as part of Planguage (diagram), 11
detailed specification can wait, 188
initial overview (diagram), 18
introduction to, 35–79
principles, 64
process description, 62
rules, 61
template, 77

Requirement type:
condition constraint, 57
design constraint, 57
function requirement, 54
performance requirement, 54
quality requirement, 55
resource requirement, 57
resource saving, 56
workload capacity, 56

Requirement types:
basic types, 53
introduction to, 51

Subject Index 471

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-SUBJECT INDEX.3D – 465 – [465–474/
10] 30.6.2005 12:55PM

Requirements:
ambiguous, 41
basic types of, 53
capturing, 4
decomposition of, 45
definition of, 37
evolution of, 41
handling complex, 42
identifying the ‘true’ high level aims, 133
inheritance of, 90
introduction to, 35–79
key, 39
key issues for, 38
scalar, 46

Resource, 403
as a system attribute, 47
relationship amongst resources, budgets and

costs, 167
role in determining priority, 213
stakeholder requirements and, 167
use of resources across the entire system

lifecycle, 169
Resource Constraint, 404
Resource Requirement, 405
icons, 181
introduction to, 57
in requirements, 38
a worked example, 172

Resource requirement specification:
a case study example, 179
policy, 183
principles, 176
process description, 175
template see Scalar requirement template
see also Scalar attributes

Resource saving, 406
performance attribute, 111
in requirements, 37

Resource saving requirement, introduction to,
56

Resource savings, an example hierarchy for, 160
Resources, 167–84
Resource Target, 406
Result cycle, 407
as component of Planguage (diagram), 11

Results, 4
Reuse of scales of measure, 139
Review, 408
and SQC, 249

Risk, 409
corporate policy, 32
use of alternative design ideas, 192

Risk management, strategies, 6
Role, 409
Roles, SQC, 237
Rule, 409
basic definition, 230

Rules:
design specification, 200
Evolutionary Project Management, 302
function requirement specification, 94
function specification, 91
generic specification, 16
Impact Estimation, 271
overview of use (diagrams), 18, 19
performance requirement specification

see Scalar requirement
requirement specification, 61
resource requirement specification

see Scalar requirement
scalar definition, 147
scalar requirements, 122
standards, 10, 12

Safety Deviation, 410
Safety Factor, 411
Safety Margin, 411
Scalar, 412
Scalar attribute icons:
for performance, 133
for requirements and benchmarks, 133

Scalar attributes, 116
central role of a Scale in definition, 145
generic hierarchies for, 153
parameters, 120

Scalar definition, rules, 147
Scalar levels:
implicit assumptions of ‘or better’, 128, 130
setting, 128

Scalar requirement:
rules, 122
template, 135

Scale, 412
as scalar attribute, 116
definition of, 147
definition using qualifiers, 148
a worked example of definition, 141

Scale definition, process description, 149
Scale Impact, 413
Scales of Measure, 139–64
diagram showing scales, 163
examples of, 149
finding and developing, 139
reference library for, 139

472 Subject Index

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-SUBJECT INDEX.3D – 465 – [465–474/
10] 30.6.2005 12:55PM

reuse of, 139
specifying, 145

Scale Qualifier, 414
Scale Uncertainty, 415
Scale Variable, 415
Scope, 416
definition of, 68
in Planguage architecture, 59

Scribe, SQC, 238
Serviceability, a worked example, 113
Set parentheses, as basic Planguage concept, 15
Side Effect, 417
Software Engineering, 417
Source, 418
as basic Planguage parameter, 15

Source documents, basic definition, 230
Specific in Planguage architecture, 59
Specification, 418
of function requirements, 89
level of detail of, 144
in Planguage architecture, 59
of requirements, 35–79

Specification control in Planguage
architecture, 59

Specification meeting, SQC sub-process,
242

Specification Quality Control, 223–59, 419
an example, 225
as component of Planguage (diagram), 11
basic definition, 228
corporate policy, 32
determining effectiveness, 247
economics of, 246
effectiveness of, 247
estimating remaining defects, 247
expected results of SQC, 227
extending into specification review, 249
for finding defects, 258
forms, 232
guidelines for assessing, 231
overview of process extended into review, 250
possible purposes for use of, 259
process description, 239
process description, simplified, 242–5
process overview (diagram), 242
and rules, 249
simplified, blank form, 257
simplified, example of filled-in form, 245
standards, 231
for supporting continuous process

improvement, 259
and the need for a champion, 252

and the need for a supportive organization,
252

for understanding document quality, 258
use on different document types, 251
work process standards, 26

Specification quality level see Quality level
Specification review, extending SQC into,

249
Spiral Development, DoD, 295
SQC, 420
SQC see Specification Quality Control
author, SQC role, 238
checker, SQC role, 237
checking effectiveness, SQC role, 237
checking efficiency, SQC role, 237
Checking, SQC sub-process, 240
Data Summary Form, blank, 255
Data Summary Form, example of filled-in,

235
Edit Audit, SQC sub-process, 241
Edit, SQC sub-process, 241
Editor Advice Log Form, blank, 254
Editor Advice Log Form, example of

filled-in, 234
editor, SQC role, 238
Entry, SQC sub-process, 239
Exit, SQC sub-process, 241
Kickoff, SQC sub-process, 240
Master Plan Form, blank, 253
Master Plan Form, example of filled-in, 233
Planning, SQC sub-process, 239
Process Meeting Log Form, blank, 256
Process Meeting Log Form, example of

filled-in, 236
Process Meeting, SQC sub-process, 241
roles, SQC role, 237
scribe, SQC role, 238
Simplified Process Form, blank, 257
Simplified Process Form, example of

filled-in, 245
SpecificationMeeting, SQC sub-process, 240
Statistics, SQC sub-process, 241
Strategy, SQC sub-process, 239
team leader, SQC role, 237
writer, SQC role, 238

Staging a Conference, a worked example
showing design engineering, 194

Stakeholder, 420
as basic Planguage parameter, 14
critical, 38
examples of, 85

Stakeholder role in Planguage architecture, 59

Subject Index 473

//INTEGRA/ELS/PAGINATION/ELSEVIER UK/OMP/3B2/FINALS/0750665076-SUBJECT INDEX.3D – 465 – [465–474/
10] 30.6.2005 12:55PM

Standards, 10, 421
in Planguage architecture, 60
Specification Quality Control, 231
work process, 26

State-of-the-art, understanding, 40
Status, 422
as basic Planguage parameter, 14

Status in Planguage architecture, 59
Strategic management cycle, as component of

Planguage (diagram), 11
Strategies:
for risk management, 6
for systems engineering, 6

Stretch, 423
as scalar attribute, 116, 120, 121

Success, quantifying, 39
Supports, 424
Survival, 424
as scalar attribute, 116, 120, 121

Swing solutions, (cartoon), 188
Systecture, 425
System:
attributes of, 47
definition of, 47

System [Planguage], 426
System attribute in Planguage architecture,

59
Systems Architecture, 427
Systems Engineering, 428
strategies, 6

Tag, 430
as basic Planguage parameter, 14
in Planguage architecture, 59

Tailorability, an example hierarchy for, 157
Target, 430
in Planguage architecture, 60

Targets, as scalar attributes, 118
Task, 431
Team leader, SQC, 237
Template, blank:
design specification, 217
elementary scalar requirement, 135
Evo step specification, 317
function and function requirement

specification, 105
performance requirement see Elementary

scalar requirement
requirement specification, 75
resource requirement see Elementary scalar

requirement

Template, filled-in example:
design specification, 199
Evo step specification, 313
functional requirement specification, 102

Term:
Planguage, 14
user-defined, 14

Test, 432
Time, 433
Timescales for delivery, 41
Trend, 433
as scalar attribute, 116, 120, 121

Twelve Tough Questions, 7
Type, 434
as basic Planguage parameter, 14

Uncertainty, 434
United Nations, case study for design idea

specification, 197
Until, 434
Upgradability, an example hierarchy for,

157
Usability, a worked example, 119
Usability, example hierarchies for,

158–60
User-defined term, 435
as basic Planguage concept, 14
as component of Planguage (diagram), 30

Value, 435
Version, 436
as basic Planguage parameter, 14
in Planguage architecture, 59

Vision, 436
as a requirement type, 51
in requirements, 37

Waterfall method, 26
Wish, 437
as scalar attribute, 116, 120, 121

Work process standards, 26
Work process, as component of Planguage

(diagram), 30
Work rates, as standards, 10
Workload capacity, 438
an example hierarchy for, 161
performance attribute, 111
in requirements, 38

Workload capacity requirement, introduction
to, 56

Writer, SQC, 238

474 Subject Index

